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critical parameters are defined and, used. This Tesearq work is
presented in three parts relating to.1) bakt fundamentais.of
scaling, data requirements, and algorithm constructions and problems;
2) two step-by-step examPles of non - metric section/ of a
multidimensional scaling algorith ; and 3) a review ofd geographical
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applications of the approaci in aqiariety of problem, areas. The
/

position of this paper is that MbS provides a useful and cokilstructive,
methodology for examining the problems of preference And choice for
researchers in geography.'In'conclusion, some problems of 'using MDS
are.Mentioned WI its potential uses in geography given.
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PREFACE

An invitation fruin the Commission on Quantitative Methods. International
Geographkal Union. in November 1969, to prepare for 'Multivariate Scaling' a
detailed disLussion of the technique and the reason for its use, endrng with a

step-by-step worked.example using real data," for presentation at a meeting of the
I G.U. Quantitative Methods Commission in Poznan in September 1970, appeared
to us to be an incentive to weave together the patchy knowledge of scaling algo-
rithms that we had found spattered throughout many periodkals and manuscripts,

For geographers who look askance at the necessity of becoming acquainted
with yet another statistical tool, we can only express- our conviction that the
importance of the sLaling problem has been tuu little reLognized in geography and
that, insofar as a major area of geographic interest is with choice data, scaling
techniques provide the tools for analyzing such data As cache? styles in geographic
res&irk_li emphasizing striktural descriptions give way to research styles that, search
for process laws first and then explore their spatial implications, so techniques that,
are suited to the analy sis of choice and the preference functions underlying choice,
must- be adopted. In LumparisQn with the parametrut. statistical techniques more
commonly used by geographers. non-metriL staling techniques allow. the researcher
toe more flexible in searLhing for functional forms and in designing schemes for
assembling bask. data. To take advantage of this flexibility is both a problem and a
.hallenge. Our hope is that this monograph will indicate to the skeptic that suf-
fkient achievements in sLaling appliLations have already been made to justify the
serious study of the still developing area of scaling methodologies.

i As with any basic analy tical technique, applications range through every sub-
-field of geography. Consequently we felt tljit'a review 0). these applicatipps might
be useful in indicating to researchek immersed in their -speLializ0 area, the com-
mon problems of a methodologiLal and tedmical character that flicy share with a

'afar wider community of schurars. In preparing the review, however, wit felt that an

dd,equit e statement on the mathematics and heuristics of scaling algorithms was
_first necessary- Ideally 'we would have preferred to make a citation to a review that
already existed. Search as we did, we were not able to locate a review which served
our purposes. though we saw some references to reviews "in pfeparation." The
exLellent treatments of Torgerson [57J and Coombs 171 largely predated the major
developments of Shepard [50, 511 and °of Kruskal [28, 29, 301. These, in turn,
spawned further theoretical and empirical works that we soon found were not
demibed adequately in print even though their understanding was critical for those
researchers who depended on sLaling in thqir substantive work. We found that
information on this subject was being transmitted throdgh numerous working
papers, discussion papers, unpublished dissertations, newsletters,land computer
program printouts. In our own research we found it necessary to "dissect" sub--
routines in staling programs in order to un'derstapd how certain critical parameters
were being defined and used. Thus the work is !Absented in three parts relating to
bask. fundamentals of sealing. data,requirements, aril algorithm construction's and
problems, two step-by-step worked examples of.the non-metric section of a multi-

_
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dimensional scaling algorithm, and a review of geographical applications of the
approach in a variety of problem areas.

The willingness of some of the most.prominent researchers in multidimen-
sional scaling to send us unpublished manuscripts, reprints, computer printouts, and
test data, and, in the case of Professor Lingoes, to provide us with a most helpful
critique of the I.G.U. paper, was a s'eurce of inspiration to us to complete the work.
In addition, several of our students helped us by working on some of the program.
ming problems and- by running experimental data through the various algorithms.'
Although we had intendett lo experiment further with different algorithms and to
report res0s, in this pager, we found that Lingoes and Roskam [33] and Young
and Applebaum [62] had admirably designed 'experiments and reported on this
question.

We thank Profe'ssor James Lingoes of the University of Michigan and. Pro.
fessor Forrest:Young of the University of North Carolina for the,materials they sent
us and for their most interesting communications. We thank also Professor Waldo
Tobler of the University of Michigan for his. nterest in the work, for generously
allowing us to use his otrilateration example in Section I, and for showing us the
variety of map transfdrmations applications" of scaling. At the University of Iowa,
Mr. 'John F. Hultquist and Mr. Stanley R. Lieber have helped us by testing aiu
using the TORSCA scaling algorithm; at McGill University Dr. Gordon Ewing
helped us by describing and commenting on his use of the Guttman - Lingoes SSAI
algorithm, at Ohio State University Dr. Ronald.Briggs,and Dr. Donald Demko (now
at the University of Texas and Queen's University, respectively) experimented with
unfolding techniques and with the Kruskal MDSCAL series of programs; Professor
L. Neidell formerly of the Department Of Marketing, SUNY at Buffalo, drew our
attention to several interesting spatial applications of scaling methods outside the
field of geography and provided tapes *of the entire Guttman-Lingoes series, Pro-
fessor Paul Isaacs Rf the Psychology' Department, The.Ohio State University, gave
critical technical ahvice: ,on the interpretation of various ,algorithms. We also
acknowledge that the Computer Institute for Social Science Research, Michigan
State University, provided the initial stimulus and the programming assistance that
led to our applying multidimensional scaling techniques our own work. Finally,
we acknowledge our gratitude to Dr. T. Czyz, Chojnicki, and,other Polish
geographers who created such a convivial atmosphere for discussion at the I.G.U.
meeting in Poznan; September 1970.

A'cknowledgements are also due to the loll/owing people arid (rganizations for
permission to, use diagrains and maps. Professor W. Tobler, University of Michigan,
Northwestern University Press and Department of Geography; Associathin of
American Geographers, Canadian Association of Geographers, Dr. Paul Schwind,
University of Hawaii, Geographical Analysis, and Profe`ssOr Peter Gould, Pennsyl-
vania State University.

Additional support was granteld to Rushton by the Giaduate College, Univer-
sity of Iowa, and the United States Army Research Center, and to Golledge by the
Departments .of Geogrohy, University of Sydney, Australia, and The Ohio State
LJniversity.
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I. AN INTRODUCTION TO SGALING AND -SCALING
ALGORITHMS . ° 4

A. Scaling

The fundamental idea of scaling is to produce a range ,of scores that have mean-
ing either with respect to each other's values or to some arbitrary or absolute value;

get or accepted by the scale. A scale generally consists of a system of numbers
related by orrespatence rules which enable meaning to be attached to the objects
possessing them. For example, a number system is ,a scale which can be nominal,
ordinal, interval, or ratio in nature [27, pp. 9-12]. The explication of mi number
*stem involves itemizing the correspondence rules which give meani'Ifg to each
number in the sy stem [41]. Thus, we can envisage that potentially there is an
infinity of way s to scale data, generally, however, the scaling problem reduces_to
une of devising rules for the measurement of a construct or phenomenon such that
the resulting measurements provide an easily interpretable and admissible trans-
formation into numerical forn*of the pheilmerion being scaled.

The advantages of scaling are, similar to those which derive from .the measure-
ment of properties In general: 4

1. scaling makes it possible to differentiate among instances that may be lumped
together in a given class of things (e.g.. degrees oi"warmth");,

2 scaling can shot', relative position rather than-just 'difference; and
1 \scaling allows syste 'atic manipulation of the scaled items in conformance

with concepts and th ones of logic and mathematics.

ScZaling Methods are ge daily subdivided into two classes- unidimensional and,
multidimensional, Umdim nsional scales are those which measure variation with
respect to one attribute (e.g., color hue, population size, neigliborlintss, per capita
income residential status, social rank, degree of urbanization, and so on). For
example, 'Berry'i d Gihsberg, [4] constructed a series of unidimeitsional scales
measuring a variety of urban, economic, and societal characteristt of various.
countries of the world and used those scales in a multivariate analy ii Of levels of

, ,,economic development. Similarly, oche urban rank size-mile an le indices of
' primacy developed by Linsky [35] and Mehta [40] are unidimensio scales based

Am population-size which proyide a range of scale values. Hoe4e, &Site the
widespread use of such scales in geography, we must be aware of trile-prilblem. that
systematic variation of the scaled phenomena with respect tq, mere than the

'assumed number of attributes may be undetected and may lead toelifficulties, in
interpreting the results, or to a rejection of experimental results. Aamples
include divergences between actual migrant moves and scales expressing the "desir-
ability" of Places of settlement, or'yariations in the attracting power of places
resulting from variations in the jitiinber of 'functions rather than just population size

[3] 0,1`,

Multidimensional scaling aims at developing procedures which willNassign.sets of
numbers'to various quantities of attributes such that the numbers directly reflect
variations in the quaktities of the attributes among the phenomena being scaled.

40.4411; / 10
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For example. ciistinetions may be called for between objects which vary with re-
spect to color, location, shape, size, and so on. Suck 'objects, form a multidimen-
sional series:and the scaling procedure attempts to identify a number of relevant
dimensions of these objects., To do this, data are collected to permit the detection
of systematic variation with respect to inure than an, assumed small number of
attributes. For example, if scaling is used A, an evaluative device, a subject is
generally instructed to consider the similinty ar dissimilarity of stimulus objects
(considering all relevant attribute0ather than being asked to rate ?objects accord-

ing to the magnitude of some specific attribute. Specific examples of these ,pro-
cedures are discussed later in thq'paper. .

Recognition that any object may have a number of attribillt, and thal different
attribUtes may be used by different individuals in their attempts to scalcthe objects e ,

in some way,,,,led tb the concldsion that AY given object could be regarded as
existing in an n-dimertsion4space, where n represents the number of, pezeived or
actual attributtis. The quantity pf each atfribire belonging to an object can theit be
interpreted as a geometrical coordinate which, when used in Conjunction with other
quantities (coordinates) cl4termines the location of each object in 'the, n-
dimensional space. The sitnificance of this is ,that if individual objects can be thus
locited, then interpoint distances can be cal ulated and objeCtive statements can be
depived concerning the distances separating rious objects.

There are sortie important points to congi er about this geometrical interpreta-
tion of the multidirnensional scaling process. First, consider the case wheretobjects
are located in an n- dimensional, real Euclidean space. Here each number associated
with an Atribut: gives the projection of the object on one of the coordinate axes of
the space, in other wordi, it Vows us to determine the distance of the object from
an ongin along a given axis. The. distance between two-points loEated in this space js
given as follows: .

r n %
= L E P 2 (1)-r= 1 rk

written j and k are the two points,
. (r. Is an index of the axes,

in is the number of orthogonal axes,
and p . prk are the projections of the paints- on axis r.

What is particulatly imp4tant is that given thegistancei between all Pairs of points.
in the space, the: projections of the pefhts on any arbitrary set of orthogonal axes
the spacecan be determined. In other words, given interpoint distances, we can
recover the number of dimensions in which the points exist. For any set °linter-
point distances there be a space of minimum dimensionality in which a',satis-
factonly large number of 'the interpoint distances maintain their relationships one

,,.$o another. One of the aims of multidimensionaLscaling is to identify this space of
minimum dimensionality and to 'interpret each dimension in terms of stimulus
attributes.

The second critical feature of multidimensional scaling is that it is not necessary 41-,

2.
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to have metric information on the interpoint distances as input. Because subjects
are not asked to make decisions with respect to a given number of attributes, they
are free to choose any number of attributes they desire in order to make distinc-
tions between objects. Thus, instead of imagining thaf each stimulus object has a
Ideation in a real Euclidean space, the subject locates each .object in a Ppsyc'ho-
logical space" which may exist in a quite different form of geometrical space. In
addition, subjects locate points in the space merely. in terms of their being "nearer,"
"greater than," "more similar,' "more preferre" (and so on) to any given object
than they are to other The aim of multidimWdnal scaling is to take The data
collected with respect to stimulps,objects and to recover from these data a spatial
configuration of points in an identifiable space of minimum dimensionality.

B. Data Requirements and Collection"
f),

-
It.was suggested above that 'multidimensional scaling pirocedules are versatile in

that they can take as input either metric or non-metric dala..,Since discussions of
the various types of metric data can be found in any_basic mathematics or statistics
book, emphasis will be placed hereon Usinenonrnetric information.

Cobinl4s47) argues that there are Sur. pasic kinds of behavioral-, data.,
preferential choice, singltimuius, stimulus-comparison, and siniilarities data.

Assume that we have a sample of individuals and a collection of phenomena and
that the individuals are asked to state their preferences for the phenPmerta. The

instructions may be of the following types:

I. Choose one outo,fa set of n' phenomena.
2. Choose k Olitofa set of it phenomena. -,

3. Choose one of a serietko.k. subsets 6f the n phenomena.
4. Choose one out'oftverY possible pair of the phenomena.

When sample members perform'one or, another of the' above tasks they state their
preferences for the phenomena chosen, and the data collected are called preferen-
tial choice data. For this type of data, we assume that the set of stimuli and_ the
individuals revealing ,their preferences can be mapped together into a joint space.
This joint space N a psychological space, .and both stimuli and individuals*
mapped as points in such a way that the relations among the different points in the
sokc reflect the observed preference orderings of the individuals. It can be hypoth_
esized that each of the individuals who halebten asked to state preferences_among
the stimuli will have -different ideals.as to what an appropriate coMbination of
stimulus _attributes should )e. 'Thus, ifta particular stimulus has more or less of a
particular attribute, individual preferences might reveal it to be more or less desired.
Through a' sequence. of preferential ch6ice statements, an individual reveals where
each stimulus point lies with respect to his ideal point. We can imagine that the
same basic dimensions are used by most individuals in order to make judgments
about ,the stimuli but that.each individual may prefer different, quantities of each
attribute. Thus, the attributes that are perceived in any stimulus will be mapped
into the space in proportion to whether or not an indiiidual desires that particular

3
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attribute, in other words, in relation to where his ideal p t lies with respect to
arty dimension by which a given attribute is tUresented. Given a sample of inaivid-
ulls and a sample of stimuli, the-slimulrmay.,be-inappedinto the same space as the
individuals. The problem then is toad -how the indniduals and the stimuli can be
mapped into a space of minimum dimensionality to reflect the preference orderings
of each of the individuals.

Thts particular problem becuAes Complicated somewhat when we realize that
when choosing between pairs of phenomena, for example, subjects will not always
reveal the same preferential ordering. Indeed, in an experiment where a large num-
ber of preferential choices are made, each individual may make intransitive choices,
that.is, he may prefer A to B, B to C, but C to A. If there are no such intransitivities
in the _preference ordering, then stimuli can be rank ordered for each individual
from most (o'leastpreferred and a unidimensional scale for that individual can be
compiled, While the problem still remains to fit together all the individual uni-
dimensiona scales, it, becomes far more complicated if any given individual has
intransitiviti in-'his preference orderings. Intransitive preference rankings (or
preference orderings) of objects cannot be arranged in simple rank order. Intransi-*
live prefer ice orderings mqy occur when a stimulus object with multiple attifbutes
evokes in 1 respondent an ordering based on a parniular dominant attribute for one
comparison, and then evokes a rank ordering on the basis ora different attribute
for a second compari on, For example, cailibei, may be considered to have the
attributes of brittlene , chewiness, quality of chocolate, or type of filling. Given
any two candies, an , individual may compare thorn loin the point of view of
brittleness but when comparing either of them with another, an alternative' attri-
bute such as type of filling may b.e used as the distinguishing criterion.

Coombs' idea with respect to this preferential choice problem is to unfold the
space in which preferential :Choices are being made%uch dilat both individuals and
o6Ncts are mapped as points in a joint space and the mutual relations amdng the
points reflect the observed prefetence orderings of the vanous.individuals [7, pp.

-80-1921. The unfolding of choice' s is not our major concern in this paper, but. tt
does provide one basis for the multidimensional scaling algorithm developed by
Coombs, which is referred to later in the paper. ,

The seconj,1 ty,pe of data t 't Coombs defines is single stimulus data. Ilete\we
assume that uur sample individi Is are presented with a set of homogeneous stimuli_
(i.e., stimuli from a single population such as"politicpl candidates, supermarkets,
etc.), only now the individual is asked to make a judgment abut each stimulus in
film Fur exaniple, one may be asked whether or not lieXOA vtte-for a certain
politizian. In this case, if we again regard each individual as hiving an ideal point
then we can imagine that each stimulus when-presented to the individual is said to
lio either within the "neighbOrhood" of his ideal point or outside this hypothetical
neighborhOod.,This would. generate his, yes-no response. These, data are sometimes
described in abstract terms as "proximity relations" and are somewhat different

,...,...,

from the order relations expressed in preferential choices.
'A third type of data arises when we ask individuals.todetermine an order
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relation on pairs of points from the same data set: these are called stimulus com-
parison data and the method of collection is generally the method of paired com-
parisons. Consider the candy example mentioned previously. Assume that We sug-
gest every possible pair *of candies to our subjects and that we ask each individUal to
judge between the two candies on the basis of.some actual or perceived characteris-
tic. In the simplest of all experiments we would simply choose a single attribute
such as brittleness, for example, and ask for comparison between the candies on the
basis of this attribute. Judgments would therefore be 2resumed to reflect dif-
ferences among stimuli and not among individu;ls. If, however, we find that the
individuals do not agree with respect to their interpretation of th ttiibutes, then a,
frequent technique is to subdivide the population such that the gr ups created are
homogeneous with respect to'their perceptions of the attributes. Note that in
comparison to the two previous procedures the individual need not be reted
as a point in the same space as the stimulus. Rather, the comparisons betwee the

,stimuli enable us to locate them in the space of some dimensionality such that e

distance between each pair of points in the space is interprted as an indication o
the similaritj, or dissimilarity of the objects. Short distances indicate high degrees o
similarity and large distances denote dissimilarity.

The method of collecting paired comparison data can,differ somewhat from
experitrent to experiment. In stimuluS7 comparison experiments, freqUent use is
mule of paired Com parison, triadic comparisons, and comparisons of pairs of dyads
[7, pp, 3-59; 4444621 .The typical paired comparisOn experiment involves subjects
being given all ,possible pairs of 'objects and then being asked for some type of
comparative judgment related to the pairs. If it is assumed that self-similarities (i.e.,
comparing the object to itself) are ignored and Complementary comparisons are-
equivalent A7B,,,is assumed the same as B-A), then there are ,n(n-I) pairs of

2.
some typeobjects. for 'whic 11 ,spe of comparative judgment is requested. The ultimate

aim is to obtain the ordering of the paired objects upon the' basis of some psycho-
logical continumit. The piocechire is based on one of the fundamental principles of
the Law 'of Comparative ,Judgment.' This states that any g.&en stimulus has asso-

ciated with it a most frequently aroused or modal discriminal process on sortie
continuum. It is accepted that any subject may choose different attributes of the
stimulus object when comparing the object with otheri;but it also assumes that the
discriminal process (or reaction of the subject to 'the Stimulus) is distributed nor-.

mally around a mode which can be called the scale value of the object.'ihus, any
two objects may differ with respect to their scale values. The purpose'olthe yaired
comparison experiment then is to allow the scale values for any two stimulus
objects to be compared so that statements can be made about the degree** simi-

larity or' difference that they evoke in any respondent: By finding the fruisncy,
with which stimulus i exceeds, equals, or 'is rated less than stimulus j we t`ain

judgment as to the relative Magnitudes of their respective scale value
In stimulus comparison experiments, the stimulus attributes upon t *ch judg-

mgnts are made are clarified for the individual. If we permit the subjeC1 fr dom of
C

5 )
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choice in comparing stimuli, this leads to,:the'dec fopment of a fourth kind o
called similarity data. With this type oidata the individual is presumed to pe,

each stimulus as a union of sets of attributes. Again, it is assumed that the sti
is able to be represented by a point in space, the coordinates of this poin
respond tb the projections of the stimulus on the various dimensions whic
individual chooses as being relevant. The object of making this yype,ofcomp
is to attempt to determine the minimum number of dimensi s which are u
individuals when comparing objects. For this type of data, comparisons are
usually by asking subjects if one pair of stimuli are more nearly alike than an
pair. In other words, we attempt to find out whether the distance separatin
pair of stimulus points is less than, equal to, or greater than the distance separ
another pair of corresponding points. In a sense, an,attempf is made to deter
an order' relation on the diStances implicit between pairs of points where al
points are from a single homogeneous set. Multidimensional scaling model
commonly: used with similarities idata in an attempt to construct some ty
stimulus space from measures of the interpoint distances between phenomena.

Of the variouskypes of data available, geographers have experimented to sine
extent with eachoM7although the use of paired comparison procedurs for coll V-
ing data is becoming somewhat more popular. Examples of such experim ,nts
include asking consumers in select one of a pair of shopping centers, 'towns to visit
in order to purchase given goop, or towns which would/ be selected for purposes of
migration, The frequency With , which any given pair *titer is.chosen over Cth rs
is then recorded [5,451. For -aam.ple, Rushton ,inerpreted the movement
farmers to towns in Iowa asiffe*butcome of a choice process which could e

inferred to be a paired compa* type procedure. Visits to each place were trap -

tormed in to dissimilarities measures. first, by recording the number of times town
'type i was chosen (for a,specified shopping trip) over town type/ when both i and j

, were present in a feasible area; secdnd, by regarding a proportion of 0.5 as being the
maximum perceived similarity, and then by firing the difference between the
derived proportions and this maximurn,perceived similarity:

.

7
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where d is a measure of dissimilarity. Here a small value for d.
u

represented small
dissimilarity between towns, and a large valtie indicated considerable dissimilarity.

Most multidimensional scaling analyses use otaly the upper half of a paired
comparison matrix. Thus only n(h-1) comparisons are used as input. Most compute

2
ing algorithms, however, allow optional inclusions for diagonal and lower half
matrices and they can be used either with complete or incomplete data.

C. Approaches to Non-Metric. Multidimensional Scaling (MDS)

It was previously suggested that implicit in every collecifon of prostimity

6
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, . .

measures (such as measures Of similarity and dissimilarity) is a kina of spatial
structure. The basic problem ot MDS is to uncover this structure. While it is general-
ly agreed that gr ter degrees of similarity infer closer distances (and vice versa), the
former are only implied distances and may not easily be transformed into metric
form. HoweveFl, in Shepard's terms: "If some monotonic transformation of the
proximity measures could be found that would convert theie implicit distances into
explicit distances, then we should be in a position to recover the spatial structure
contained only Patently in the original data" [50, p. 1271.

The various approaches developed by authors such as Coombs, Torgerson,
Shepard, Kruskal, McGee, Guttman, Lingoes, and Young represent attempts to
recover the latent spatial structures' contained in proximity-type data [7, 57, 51,
29, 38, 39, IS, 32;63] . .........- 4

,

The relative advantages of the non-metric approach in searching for'latent spatial.
stricture have been summarized by Lingoes and'Guttman:

One of, the chief benefits to be derived from constaining the solution non-
metrically, is, of course, that in general a smaller space is required to reflect order than
to reflect metric. Of greater importance, however, the dimensions themselves may well
aid Sur undefstanding of the underlying interdependencies free of the attenuation that
can result frop rionlinear relationships. Furthermore, when some lawful structure or
pattern, is present in the data, e.g., a,simplex, a circumplex, or a radex, a npnmetric
analysis will reveal the configuration whereas a metric approach will obscure the law-.,
fulners (32, ii.;.4.8.7).

:.,
t .7.-
. ..z

1. The basic eleri*nts of non-metric MDS algorithms. AlthOtigh there are dif-.
ferenCes among the alg9rithmcurrently in use, there are also broad similarities in
terms of their construction: feRures common to the majoritNf the techniques'
include:..'.: .r I

1,, ,
f,

.
.

a) an iiii4 set of input data, frequently generated by a paired comparison
experiment, within which is contained a latent spatial structure (such as

_ dissimilarities data). These input data can be 2repares1 in random vector.
. mode, or in. the form ot a symmetric matrix, a rectangular matrix, or a

, triangular matrix.
b) an initial configuration of interpointodistances which is manipulated on

successive iterations in-an attempt to define a -monotone relationship .'
between the configuration and the original data.

c) 'a computing 'algorithm (a non-metric scaling method) which incorporates
the strategy for achieving convergence of the data and the configuration.

d) a ios-§ function. (or "goodness-of-fit") function which is used to -giiide
and/or terminate tlielterative procedures. ,

e) subroutines for handling missing data and tied data, and for determining

.
step size motions within each generated configuration.

'f) ,
techniques for estimating the configuration °deformation wtlie number of

1 'ilyneitiions in which the configqration is'plo-tted is changed:
1-'0-generalized format fora non-metric MDS analysis of complete data has been
provided (as follows) by Lingoes and Roskam [33, bp. 11-161.

.,
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Let = a k-element ,array (or vector) of arbitrary indices of dissimilarity
between all pairs of n-objects, k = n(n-1) /2

8.
J
= the general,element of A, (i = 1,2,... n-6

j=1 +1, i + 2, , n)

Let 6 = 8 and ignore therefore sy mmetric elements and 'diagonal elements.
Define D as a kelement vector of real numbers with elements a

1i
= f(P..) such that,

when & <8kl' either d. < akl' or a <dki

Note that du < dki implies semi-strong monotorifcity when some A-elements are
tied and strong monotonicity with no ties, and d, <dk, implies weak monotonicity
fordo ties and semi-weak monotonicity for ties (the following section discusses
monotonicity).
Assume D --) 1 monotonically: now D is a monotonic transformation of the A-
vector whose function is to weight the iteratioqs for moving a configuration toward
its goal and to form a basis for evaluation of goodness-of-fit at any iteration.
Define X an an ii x m matrix of rectangular coordinates (for a given configuration)
with m representing the number of dimensions.
Define D as a k-element vector of distances calculqted from X between the n-points
embedded in a given space according to the standard distance formula given earlier
as equation (1). The general problem statement can then be formalized as follows.
given A, an initial confiii ration X, a fixed n, and distances calculated between the n
points, try to get D as close as possible to D (i.e., minimize some loss function), for
then D will map into A.

The general procedure is to:
./d1\

1) determine an initial set of coordinates (X) and select an appropriate
dimensionality (m);

2) compute the Euclidean distances (D);.
3) solve for D the' predictions of the appropriate distances

i.e.. dii = f(601;
4)- compute the normaiized loss function (e.g., STRESS);
5) if the loss function is small enough (or not changing "sufficiently" from

one iteration to the next), terminate. Otherwise modify X and return to
'step 2.

At this stage, it is pertinent to discuss Some, of the basic elements of MDSo
approaches as a means of explaining some of the rules which govern algorithm
construction. in particular, we plan to focus on the requirement of monotonicity,
methods of deifying initial configurations, goodness-of-fit criteria, treatment of ties,
and some brief comments on dimensionality. Summaries of a selection of
appioaches to MDS will then indicate some differences in the strategies- used to
recover configurations from non-metric data.

2. Montonieity requirements. The essence of MDS algorithmsis the requirement of
maintaining a monotonic relation between the original dissimilarities data and the

e."
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distanfr s which are deri ed to repres'Int them. While it may seem at first thardie
i'impos@ort of the monot nicity restraint is aweak one, Shepard has argued that.

k

If mon-metru. const ints are imposed in sufficient number they begin to act like

.e.
metne,constrainig. In the case of a purely ordinal scale the non-metric constraints are7,-, ....
relitiveb few ind, consequently, the points on the scale can be moved about quite

.-set-ov- .
extettuVe136 without violating the inequalities (i.e., without interchanging any two

-...s.-
in

wr2oapop, As these same po'ts are forced to satisfy more and more inequalities on the
inIipoint distances as well, however, the spacing tightens up until any but very small

ibations of the points wdl.actually violate one or more of the inequalities:151, p.
2

f
i ,--

I
Thusii,we impose a monotonic constraint on the relationship betweep a set' of

.t.:.dissimetmty measures and a,set ciadistance measures, we are in effect assuming that
rank

)

the rank order of dissimilarities is by itself enough to obtain a solutiPrii.e., to
.

Mo._ or-itchy requirements can; be specified in .a number of ways! [18, pp.
obtannth , lent spatial structure. .,I-

480-4840-et R be the, number of distinct values among the off-diagonal elements
i'e-jAgi

of a airix.consisting of an initial Set of distance ranking numbers; R =i h(n-1) if, .
A:

and ::11 there is complete inforination (i.e., no missing data) and no ties. Where
each il. Bei. is tied only with its transpose in a symMetric matrix R < n(n-1); R =

...,

, . 2
fn(n4 where information is complete and the only ties are with the transpose.

t 4 . .

Nowrilitrfia trial matrix of distances, let Q be the number of off-diagon elements
.

,

whic are specified (i.e., not Missing). Because of the symmetry of the data,
Q < iv tt I). This allows for the definition of three tylies of monotonic conditions

based the p,otential presence oriabsence of ties and/or missing data:
,

1 = R, strong monotonicity is said to exist (i.e., no ties)

), R, stAni-strong monotonicity is said toexist,

,1,3k R; weak monotonic4 is said.to exist. .
.

1

fri Vicral, permitting the removal of ties enables a smaller space to be attained
than tlteryise and most algorithms adopt conditions of either Q ?.-- R qr Q <R.

T ;'objective of the monotonicity constraint is to ensure that the rank
orde, erpoint distances obtained from some Configuration of points is identi-
cal th the rank order of-the original dissimilarity measures (or inyersely mono-
toni,witti similarities data). Thus points with the smallest dissimilarity measures
sho6rAnd up with the smallest distances between them in the final spatial struc-
turf" perfect monotonic relation would involve exactly the same ranking for
corresponding pairs of dissimilarities and configurationidistances. ,

,4 .8i. be a measure of dissimilarity between n "types".pf stimuli [28]: For a
matrix such .dissimilarities the intent is to represent the n types as "n' points in t

. 9.
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dimensional spaCe, erein 'the interpoint distances (dij)correspond to the ob-
served degrees of dissimilarity hetweerwhe n types. Perfect correspondence would
mean, for example, that_if type r is more similar to type j than it is to type k then
the corresponding interpoint distances would satisfy--the same fflationship fOr all r,
f, k, that is, where 6.j> 6k9 In other words, if the cational types are
shown on a scatter plot in which the ordinate is dissimilanly (6) and the abscissa is
distance (d), then as e points are traced one by one from bottom,to top, the
move is always to th right, never to the left. When this requirement is met, a
monotone relationship tween dissimilfrity and distance has been found.

In order to obtain appropriate rank orders for the distance measures, a ;norm-
tone regression is perfOrmea and in this way, by minimizing the sums of squared
differences between the derived set of numbers-and the dissimilarities, It is ensured
that the set of numbers representing the distances are "as* much like" the dissimi-
larity measures as possible. in essence a monotone regression between dissimilarity
and distance measures requires that only the distance measures be moved at each
iteration (since the dissimilarities are dimensionless numbA). Differences between
!ADS algorithm's arise when different methods are used to define the transfornied
distances and to perform the movement of the points. The critical problem is to
determine the direction and magnitudeof any moves of the points that have to take
place; the two most favored methods are the "method of steepest descent" (Or
gradient method) and the "method of curreetio'n matrices" [29, 18].

3. Treatment of ties. Kruskal provides two options for the treatment of ties. The
first or primary approach treats ties as an indeterminate order relation which can
arbitrarily be resolved in such a way that either STRESS or dimensionality can be
decreased The secondary approach regards ties as being evidence of an equivalence
relation_ which ishould, as far as possible, be maintainedeven if result is to
perease 'dimensionality or stress [33, pp. 36-37] .

In the primary approachthe one which i(kkal originally preferred [20, p.
22] when two dissimilarities were equal (i.e., 60 = 6k,) it was argued that it was of--
no great corit,ein whether do or dki was the larger, or whether in fact they were
equal or not Thus if clu*dki there was no pressure to, downgrade the configuration,
the inequality was not reflected in, the stress value, and no constraints were placed
on the estimates of distance (ciij & dkl). The*term s (d.. )2 and (dkl dkl)2_
were therefore permitted to be zero (subject to the influence of any other existing
constrain tsi. Whenever di) < dkl' the (transformed) distance estimates had to follow,
the same monotone relatron,197- could be equal (i.e., al. aid).

The secondary approach on the/other hand argued that if 60 6k1 then either

d11 dki or the configuration should be downgraded until the equality holds. Thus
estimates of the distances must be equal (d,) = dm). If ditdki then 011,, a1 )2 and

(did akt)2 are not zero and are reflected in the stress value. In other words,
Whenever 6 <6 then a. and whenever 6 ij = -6 ki*theri =ij kl ij kl

'The essential difference between these two ways oiCtreating ties is in,the amount
they consrihure to stress. In the primary approach, tre ties will contribute nothing

10
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, 0, 4
to stress unless they are merged with preceding or succeeding blocks, 6f:1:gn42 u& or
the,mohotone regression thal.is performed. The.secondaly approachin effectaises
the mean of the distances Idii) ror the tied blocks, and thus they remain tied
-whether or not the tied blocks Are tnerged,with others dpring the monotone regress*
sion. The primary approach appears to be the most/widespread in the major non-
metric MDS algorithms, and a recent study has , canclucted that the primary
approach is to be preferred [33, p: 136]. . /1 °

4. Goodness-of-Fit. The problem of determining the ,"best fitting" confrg ration Of
derived distances is also important in all the various approaches to MPS, and the
method of resolving it varies from algorithm to algorIthm..Ftir example, Krgskal

, . ,
128] arses the normalized residual variance from the monotone regression to define' °°'
a measure (calraSTRESS) which forms the basisior deterMini g the direction and

.. -

magnitude of distance movements at each iteration, and whi when minimized, °

gives an estimate of goodness-of-fit of the final configuration. Othergoqdness-of-fit
measures include "squariance,","coefficient of alienation," and"WORK" [61, p, 9i

, i-.,32, p. 489; 38, p. 185] .

The index-of-fit STRESS is used both in the Kruskal mptAL series of non-
metric MDS algorithms and the TORSCA routines. Basically it is the normalized.
residual variance ,derived from a monotone regression of distancesand,crissimilarie
The monotone regression in this case involves moving only the.hdrizonlak(distarice).-
measures in order to compute a line of best fit. This requites first matching the
dissimilarity and distance measures, then, checking each distahce measure to see if it
is greaterf in a monotonically increasing relation) or smaller (in amonolonicilly°
decreasing relation) than the preceding distance. Monotonietransfortnations of the
distance vialues,(called disparities in the worked example In Section' II) ate then
made to satisfy the inequality conditions in the input matrix. If a'set off' distance '
(di j) values can be generated spa; that, when they are arranged Pn vector form, they....

1

occupy the same vector position as their corresponding dissimilarity (k) measures,
, 11

Ihen "perfect match" is said occur and stress is zero... . .1.

The transformeid distances (did may be regarded as theset of numbers that
depart to the minimum degree from the corresponding set of. computed distances,
(d..0 ), while ensuring that their rank order is the same as that of the original dislimi-
lanties. Thus if we were to plot a curve to the scatter of (cii;,Sii) points,Itie curve
should move vertically or to tilt' right, never to the left. Since vire wish to work only?
with the rank order of the 5 'stress focusses on the differende between. the com-
puted

..s..
distances and the transformed distances, (dii dd. This ensures that any

monotone distortion of the dissimilarity axis will not affect the goadne"-of-fit of
the configuration. Thus, if an original point is located at,(d.., S..), the point cone-
. u 0 ,
sponding to the transformed distancelas coordinates of (di.,60., "Fitting the
curve," in this case means no more than fitting M clij values 0, = n(n-1) /2). Note -

at the at; are not distances from any configuration, but are only a monotones-
Sequence of numbers chosen is "nearly equal" to the original d.. as possible andlj
having the interesting property that their rank order corresponds to that of thb Sri.

4, `:. ..,-
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Having determined a set of itimbers,monotonically related to the set of d.ii,
define raw stress as f011ows:

r
. .

Air,
RaseStress = S* = 1 ( d,. a)2I ii (3)

i < j , i e,

Except for normalization this becomes the goodness -uf.fit measure. Raw stress,
while being invariant,, finder the ngicl-motions of configuration (rotation, transla-
tion, and reflection), is not invariant under uniform stretchu4g and slinnking of the (k,
configuration. To compensate for this, Kruskal originally divided raw stress by a /
scaling factor (T*) which was simply the sum of squared distances..Taking the
square root laf the final index led to STRESS being defined as: % '

Si = [ d-.)2 / d.1.; .2i (4)

However, in rater works, Kruskal decided that ratheithan standardize raw stress
simply in relation to the sum of squared distances, it shodld be standardized in
terms of squared deviations about a mean distance. The alternate stress value pro-'
posed, therefore, was!

.

g 1= [ ( . 1)2 / `. a.. T. )211 /z2 I) j,i < j" ."

_ .

where d.. is the mean of the distaitcp scores:
IJ

,

Kruskal suggests the following verbal evaluation oe eoodness-of-fit:
c 9

TABLE I. STRESS EVALUATIONS

Stress (S2_) (SI) Goodness,of7Fit

40% :2Q70' Poor )
20% 10% Fair
10% 5% Good

5% 21/2% Excellent
0% ' 0% Perfect.

a

Source: Kruskal [2a, 29].

. .--3 ....
5. Initial configur4tions. Since Our worked example follows the Kruskal-Shepard-
To,rgerson (K-S-T) mode rather than the Guttman - Lingoes smallest space analysis
triode, discussion of initial configurations will be limited to the options available for. . ,

IcTS,,riou tines. .

trial configurations may be generated entirely without bias (i.e., randohily) or
may,\ deliberately strtiefured in an attempt to hasten convergence of data and
generated configuration. Two major alternatives are available in the Kruskal series_
of, programs:

. ..,..
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i) the input of a configuration "of one's choosing" (which may be, arbitrarily
selected):

ii) generation of a pseudo-random initial configuration.

The Young-Torgerscrt routine, on the other hand, uses a semi-metric method of
defining an initial configuration. In this method the original dissimilarities dat'a are
;transformed to scalar products (lid using,

U. = s.k2 + sk,2 2P] [( Skh2) Pl Su2/2 (6)k h

P P

?:

where S
1J

is the original similarity of points i and j, and p is the number of points
...--

[ 3 3 , p` 130), assuming the "true dimensionality of the points equals r, the r
largest eigen roots of the Matrix U are extracted. Each vector is then multiplied by
The square root of its eigenroot, and a new se,t, of distances is calculated according
lo the general Minkowski formula:

"'I
= Zi( I Via Vja 1)m m

a
(7)

,where Via is the Ith scaled entry In eigenvector (a),-and m is the Minkowski metric
Number selected fa' the problem.

Thus the original data are converted to scalar products, these scalar products are
factor analyzed such that the datia are produced using only the first r-dimensions,
and then, finally a monotone transformation of distances is found whia best fits
_the originAl idea. Here "best" is determined by an index-of-fit. In 'Thet,`the best-fit
problem is viewed as a regression problem,with a monotone-regresSion of distances

t
disparities, here "distances" (.dig). are the measurements. produced from a

given Lonfiguratuln by applying the Minkowski distance formula, anddisparities"
are the monotonit.allY transforined distanas (referred to in,,ouf worked exai'iiple by
the term a.).

The disparities produced ,,by the above method then become,the basis for a
second factor analysis and, the whole process is repeated. Thus, the Young-
Torgerson routine uses a "semi- metric" algorithm to define an initial configuration
prior to its manipulation by -the non-metric algorithm. The routine is called semi-
metric because it performs the metric operations of multiplication and addition on
the original (dissimilarities) data during the first factor analysis, but uses a non-
metric monotone transformation (the disparities) for each successive factor
analysis. .

6. Dimensionality. The final determination of the number of cogrdinates recovered
for the data rests ultintately with the experimenter. To assist in finding an appro-

'.
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priately dim nsioned solution, the following altenatives have been suggested [281.

a)*Undertake the analysis in several dimensionand plot the relation between
stress'and dimensionality: Generally some Atieelble,Pelbow" will occur in
the curve and this should indicate the appropriate number of dimensions
(Figure 1).

b) If some given t-dimensional solution, for.example, prOvides a reasonable
solution (in terms of stress size and in terms of the ability to interpret
coordinates),_and if a (t+1)-dimensitnal solutiqn produces no major im-
provement in interpretability, then the t-dimensional solution should be
used.

c) If there is an independent estimate of the statistical error of the data, then
this gives one an idea of the appropriate number of dimension's to extract
in the sense that the more reliable the data, the More dimensions one can
safely extract.

`STRESS
35.

(X)
30

25.

20.

15.

10.

5

0

f

2 4'.1 5 6 7 8 9, 0
DIMENSION (t)

- :Figpre 1. Shepard Diagram

7. A metric example: recovering point configurationi from interpoint distances. In
an unpublished paper, W. R. Tobler has developed a worked qxample for the metric
scallig problem of finding the point Configuration that most accurately reproduces
a given set of interpoint distances. He has generously offered to include it here

. , (Figure 2). Whenever the researcher is confideV of the metric properties of hiss
similarities data, the procedure described below is a far simpler and more accurate

k. one for recovering the scale. However, when one is confident only of the ordinal
relationships in the origh461 data, non - metric scalin is more appropriate. In both
cases, however, the procedure for finding, point locations from distances is identi-

g
cal-hence the importance:41f this example. In non-metric scaling, the distances
"fitted" are the monotonically transformed distances rather than the original dis-

., tances. In metric scaling, the original distances remain at all,itimes the target dis-
tantes. Convergence is thus assured. In the case of,non-metric scaling, the original

K
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(c) (d)'
Figure' 2. Trilgeration -Sequence (Provided by Profesgor W. R. Tobler, Department.,
of Geography, University of Michigan)
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distances strain at all times the target distances via the monotonic trantorma-
st tion (eithe rank-hinges or monotone regression values, see below), but theractual

values of th riet%stances change -as the iterations proceed.

Tobler's trifferation problem may be stated as follows:

i) gihtup to n(n-1)/2 empirical distances Do betweenli points;
ii) find the x,y coordinates of these points in such a manner that the dis

tances do
1.1

calculated from these coordinates agree as nearly as pOssible .

with the given distarrces Dii. This means that F..(Dij dp2 is to be enini "
mized.

Anfiterativegraphical approximation involves the following:
Step I: Locate the n points arbitrarily.
Step II: DraW straight lines through each pair of point's.
Step III: On each line, center a segment of the delired length. Omit this

'step if an observation is missing.
Step IV: Draw vectors from each point to the ends of the segments

representing the desired distances.
Step V: MoVe eacif point to'the'rkw position defined by the average of

the local vectors.
' Step.V1: If no points have moved in Step V, stop; otherwise, use the" new positionsto begin again at Step H.

A computational algorithm can be devised by exa ining the relations in the vicinity
of one:Pint in more detail (Figure 3). For each nt desired-distance:

cornpute ds,i = (Qii ._,
. 4.-,, -

(2) -0, t, compute the direction cosine of the line',
COS 0. = Xi '''X i ;

diJ,

(3) compute thechange in the x 'direction at' the ith point with respect to the ith
'point from elementary trigonometry ast s, fffik

71
).

q
d xIs = cos01; ds.

i
=-"' 40 ( x?-Vxj) (b11 d? ).

d .
., 1.1

', ...:.

Sitnilarly,cordputki ,
, ,---,:,.;

. dyii sin 06 ds6 = 1/2 (YiY)) (bii di°) ). -f,i':::,1_, .

w. ti. .. 4A-1'

,,1\,...........". ,,
.11

(4) The total clange In the x diredtion is the average of all of the partialdtanges:
,

dx. = 1
n-1 j = 1

2 q"
dx .

I)

. s , r .
16.
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c

'(5) Set

dyi = 1 E dyij

n 1 1 ;

=- x°4- dx,

yi = .y1 dy,

4

dii = I (x: x;)2 + (y: _ y'j)21

(6) Compare

1

n I .

J=.1

E (Dij dij)2

with thvlesired accuracy level and stop, or go to step (l) using The new values.

d°ij

Ar

Y

o u 1 yj

X° X°
1,

Figure 3. Trilaleration Example Explanation of Terms (Provided by Professor W
11..Tobler, Department of Geography, University of Michigan)

17
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8. Joint-space scaling solutions. The same principles we have already described can
be applied to the problem of Iota ting m individuals and 71 points in a space such
that the order of the distances between the two sets of points corresponds with the
original" eirdered data. A simple hypothetical example will illustrate the model. The
rankings of five locational stimuli by fou?sample groups are shown in Table 2.

fABLE 2. HYPOTHETICAL RANKING OF STIMULI
BY FOUR SAMKE GROUPS

Stimuli Groups
Locatiolial
Types A ° B ° , C

1 3 3 1 1

2 1 2 4 5
3 2 1 1 3
4 4 4 ° 3 2
5 5 5 5

7 14'

Geometrical Model: Legend:
",,,L; '1. Stimulii! X Groups

2 3 1 4 5
X x X X.

ik A . B C D

The distances from each of the groups to each a the five stimuli, when rank
'ordered for each group, have the same order as in Table 1. The geometrical model is
useful because it summarizes the data in Table 1 (n +m coordinates are sufficient
to recover nx m original data values), and because it also allows generalizations to
be made about similarity between groups as they order the stimuli. For example,
distances between the' groups in the model space may be used as a summary of
similarity of point of view.

. -

D. Selected Approaches to Non-Metric Multidimensional Scaling Analysis

There are at present a number of closely related approaches to the problem of
multidimensional scaling (MDS), and some of these varied approaches are reviewed
below.

1. Coombi This MDS model is based, on the 1954 work of Hays and is adapted
from' the multidimensional unfolding of preferential choice data [7,,pp. 444-462] .

The basic requirement for this .model is that at least a partial ordering of the
interpoint distances between n points can be obtained. The intent is to put a frame
of reference consisting of r axes on the space in which the points are located, and to
determine the rank order of the projection of an points on these lines. Eve y pair of

.4
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points in space defines a line add each line is a potential axis of the space. The aim,
of the technique is to select a minimal subset of the lines and determine the order,
of projections on each in such a manner as to satisfy a given partial order of
interpoint distances. The criterion for selecting lines -is a least squares fit to the
space.

The fundamental feature of this approach is the finding of a partial ordering of
interpOint distances. For any set of individuals, a complete (or simple) order_ of
interpoint distances between objects is said to occur when exactly similar rankings
of the objects are obtained. Assume there are only two individuals (X,Y5, who
perform a paired comparison experiment on five objects (A, B, C, D, E) and come
up with the following orderings of data:,

For X: EBCbA
For Y: ADCBE ,

,
These rankings indicate complete order in the data. They can be plotted in a space
between individuals X and Y such that the interpoint relations for each pair ,of
distances is satisfied.. X-E-B-C-D-A-Y. Here the pair EA is defined as being
most dissimilar by both X and Y and all other distance relations (such as BC; DA,
etc.) can be maintained in this ordering. If however the order of data for X and Y
was as follows:

For X: EBCDA
- For Y: AECDB
then complete order is not obtained and only partial order is deriv.d. Here C, and
D can be located between B and A for both individuals, but their exact order and
the position of E is not easily determined. For example, all we can deduce from this
is that E falls between B and A for Yibut not for X (Figure 4).

X
B

E

Figure 4. Partial Order (After Coombs, 1964)

The problem attacked by Coombs, then, is that of resolving partial orders into
simple order by searching for the minimal number of dimensions requirecito Jocate
these objects. When projected onto the selected dimensions, the distances between
points located in the resulting configuration must reflect their poiition and rela
tions in the orderings given by individuals.

The, methodology involved is an iterative procedure based in least squares princi-
ples. The first step is to check for uhidimensionality by'selecting the largest inter-
point distance and seeing if a simple order of objects' is obtained. If not, partial
ordenngs are examined to see how m ny objects can be located correctly with

19
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respect to this dimension and incomparable relations (such as the C-D order in the
example above) are resolved where possible. A second dimension is then chosen
from the remaining incomparables, and another attempt made to produce a simple .

order of these remaining distances. SULcess would indiLate a two-dimenszonai'solu-L',
tion to the original problem, failure in olteS selection of and perhaps other;
dimensions using the same principles of selection. Final axes are generally "reason-
ably orthogonal" to each other. The end result is a configuration of points in an
r-dirhensional space,

2. Torgerson. Torgerson's original methodology appeared to have much in common
with factor analysis and, in fact, used a centroid method of f...;tor analysis to derive
the factor scores which were used to define the final configuratiOnof object-points.
Taking as input triadic comparisons data, Torgerson converted initial similarity
proportions into standard (Z) scores. These scores were then, transformed into a
single matrix of "comparative distances" betvieen objects and an attempt was made.
to,find an "additive constant" Which translated the comparative distances to ab-
solute distances. In other words, the absolute distance between objeots (do) was
regarded as being a combination of some perceived or psychological distance (ho)
and the additive constant (C).

Torgerson [571 suggested that both the formal mathematical method of Messick
and Abelson and his' own shortcut method could be used to define the additive
constant in any given experimental situation. Once a matrix of absolute distances
liad, been compiled, it was transformed again to a scalar product matrix(B*) and
refeirred to 'an origin at the centroid of all the stimuli. The 13* matrix was. then
factored (using centroid procedures), the relevant factors examined, and factor
scores usgd as coordinates on each dimension in order to specify the nature of the
final configuration of points. The essence of this approach, therefore, was to find
the kind of distance function that was necessary to/ convert (psychological)
measures qf similarity into real-ninliber measures. ,

The differences between this early approach and the one examined in detail in
this paper result from the adoption of a weaker assumption (the monotonicity
assumption) in transforming psychological to real distance measures. While some
basic similarities are retained, the emphasis, in the. TORSCA progiam used here is

not one of finding an additive. constant but rather one of developing a set of
monotonically related measures which correspond to the onginal dissimilarity
measures. Since our, detailed example breaks down the TOASCA algorithm into
each of its component carts, no further expansion is necessary here.

3. Shepard. Unlike much of the earlier'work in MDS, Shepard [501 did not try to
deal explicitly with a definition of the distance function required to translate
inychological" into "real" distances. llis aim was to find a configuration of points
in a minimum number of dimensions such that a plot of psychological distances

.9
against real distance would reveal the specific function needed for the translation.
flis technique was to allocate a set of (n-1) rectors to each of n-stimulus points

20
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,chrected to each of the uther (n-1) stimuli, and to indicate at each iteration how the
stimu 1 is point should be moved in urder to improve the munotonicity requirement.
At eac iteration there was simultaneous displacement of all these points.

in urder tv obtain a minimum dimensional t unfiguration, however, another set
of (n-I) vectors was defined for every (n) point which aimed at increasing the
variance of disiinces at eath.iteration. By aiming at an increak in the variance of
distance it was possible eb tollapse the configuration into smaller spaces. T9 effect
this intrease in sanan-e. ikge distances were made lager, and small distances made
smaller. -The iterative procedure was halted when an index,(S) defined as.

S =[
1Jo S(d..) )2 / n(n " {8)

where =- proximity measure between Si and Si
, S (d..) = proximity measure corresponding to the computed distance (d1i),
and = number of stimuli,

became "'small enough". Since the stimuli would be still defined in terms of co-
ordinates in an (n-I) spate, in order to expose the minimum dimensional configura-
tion he hati(like Torgerson) to determine a scalar product matrix, obtain a roots
and vector solution to the Matrix, and eliminate "unimportant" axes.

,

4. Kruskal. Shepard's focus un monotone relationships rather than a specific mathe-
inatitai function designed to translate psychological into real distances piovided the
impetus for Kruskal's approach to multidimensiunal scaling [28, 294 301. His basic
problem was to find a set of distance measures which could be related to the
dissimilarity measures such that monotonicity is not violated, and such that a
monotone regression of dissimilarity and distance yields a minimal value for
STRESS. F.

After, gEneranng an arbitrary initial configuration which is used to calculate
distances and to generate disparities, Kruskal' prody,ces convergence of the configu-

. ration and original data by a method known as the method of steepest descent (or
method of gradients). Fast the gradient of ravAtress is determined for each point

'in the configuration in the space of specified dimensionality.:

na (t), = r [(., I )-
dij (t)

-s (xia(t) x,a (t) ) (9)]

where the gradient of stress for distance (i) at location (a),
4(0 is the estimate of distance at iteration (t),
digt) is the actual distance measure at iteration (t),

: andxJ3
1

& x.
3

are orthogonal coordinates of pdints i and j.
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The gradient provides directional information for moving the points in the con-
figuration along the path of steepest Osscent such that Stt+i) < Stt) (S = Stress)..In
essence, the gradient is determined by taking the first partial derivative of stress
with respect to each point (assuming the partials are negative) [29, p. 118] ,

6S, , 6S, , 6S
6xit.\ kit Sxnt

(10)

,
Once the directions of movement for points in the configuration have been

deterthined, the distance that each is moved (step size) is determined, using:

i) an estimate of The previous step size (a) for the first movement a can be
arbitrarily set (e.g., a = 0.2) [?1, p. 121]
an angle factor ) which represents the cosine of the angle between
successive gradients in successive dimensions (defined as 4.0 (C00)3 where
0 is the angle between successive gradients);

iii)a relaxition factor (f2) which is defmed as:

1 f2 = 1.3

1 + (5-step-ratio) s.o

where "e five-step-ratio = min 1, ( present stress

stress 5 iterations ago

a "good hick" factor (f3) defined as:

f3 = min [1 ( present stress )
previous stress

Note in ii) aboye, if g represents the present gradltnt and g" the previous one;then
[29, p. 1221: . .

Z
k

cos 0 = i, s gts gis

2 yi
s

Thus step size atiteration (t) is defined

2 1/2gis )
S

. (11)

a(t) = a (t-1), fi: f2, f3 .

This provides for relatively large steps at the beginning of the iterative process and
fairly small stepS-towards the end. Although the length of gradient is partly used as
a source of information for termination of the iterative process, Kruskal, relies
primarily- on the angle between successive gradients to guide the iterative process.
The calculation of step size ih terms of STRESS helps to partly overcome the
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oblem of local minima, for if STRESS is large the iterative procedure will con-
tinue, while for low STRESS the local minima may prove a "satisfactory" configur-

qn:
The outcome of manipulating distance estimates is to obtain onfiguration of

4p2ints in a' space of specified dimensionality in which the distance r ions con-
jtirn to the original dissimilarity measures. Like factor analysis, the proble ay

Wen arise as to how to interpret the dimenSions of the configuration, but at least
ne is aware of the number of attributes being used by a population in order to

e comparative judgments concerning the original stimuli.

uttman-Lingoes. These Multidimensional scaling programs known as the Small -
;Spacer Analysis (SSA) series are developed from 'the most comprehensive alge-
ic treatment of multidimensional scaling to date [1,8;33]. --

The starting configuration is similar to that in TOgSCA detcribed above except
hat it is the rank order of the input similarity measures, rather than the sti values
hemselves that are operated on and the initial factoring of the rank order matrix is
of an ite tive procedure as in the TORSCA algorithm. The loss function (41) (cf.
ruskal's tress), is defined as:

0. = E (di di')2 ; (n=1/2*-1))
= 1

d the nornfilized phi:

4' = E (di di*)T, / d.2

= 1 * i t i = 1

heie di` are the monotonically transformed values of d. kno
images" of the di [18, p. 479; 33, p. 9] . These rank images are obta

.'the di and by placing thei"ii in the cells corresponding to the Cells r
the input similarity values (s.j). Thts,;the smallest interpoint dista
from''a given configuration becomes the rank-image of the inte
corresponding to the smallest value ... andso'on.-

.1-he di* serve two purposes: first, they provide target estimates
nk-order corresponds to that of.the input datf.may be used, to

terations toward a solution configuration; and second, they provide
I

,i

11.

I

be used to measure progress in reaching a final solution. Thus, whf
I

. , ,,

= 0, perfect fit obtains. The measure of unexplained variance (the
ialienation') is defined:ned: .

K .,,.. E., _0_01 1 /2

The method of minimizing K is known as the "Correction Matrix" me
similar to that used in the non-metric algorithm in the TORSCA routine (desc

4-49tre,'
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in detail tktheworked example in Section II), with modifications in the stesize
adjustment parameter (a). In the SSA safes, alpha varies not only from one itera-
tion to another (as i% both the MDSCAL and TOR'SCA algorithms) but also from
one point to another! A further refinement in the SSA series is that iterations are
allowed to proceed or &given set of d.* before the re-definition of a new set of di*

A on the basis of new`computed values of d (known as the two-phase process). Sonie
advantages are derived by formulating the algorithm in these terms [18, pp.
485-4861.

E. Slected Problems in Non-Metric Scaling
o e

.01.0

We discuss below two major problem areas which must be confronted in using
multidimensional scaling. One is aninterpreiive problemthat of finding substan-
tive meaning in the dimensiOns- of the recovered configurations. The other is a

.

iProblem in algorithm construction' and is concerned with ensuring that whatever
goodness-of-fit function the algorithm has attempted to minimize has in fact heen
Minimized. Some of the earlier scaling programs Were particularly prone, under
certain conditions, to lead to "solutions" that were far from the optimal possible.
This problem of local minima andconvsergence is discussed first.

a.

I. Local minima and the convergence process. A goal of all of the scaling algorithms
discussed was to avoid situations in which po ts would beco located'such that
mall movements, frowever computed, Would always lead o higher stress even

though some other configuration of the points might exis for which stress' would
be appreciably lower. A' number of strategies have been ggested to ensure that the
researcher will not present such interim solutions as fl ones.

Multiple solutions. In this strategy [25, p\--.
computes a number of solutions from different
tions. Thus the hope is that locaientrapnient
some of the "runs." With this stratet, the
accepted [201 .

1-; Selection of i radonEviden
[53] that figurations influen
minim Rindom or arbitrary co

[33, p. 1261. Sometimes, the re
e propertiy of the final -configurati

a configuration, containing these prope
oei and Roskani [33, p. rn] recommend a

mpute a starting configuration for the non-metri

58; 33, P. 1171 the tesohrcher
ally random) starting configura-
ints will be avoided in at least

it ting' solution configuratimois

110.113, 126-1321,
encounteiing local
cular are OraneNto

ye knowledge a_ bou 411 /6 1L.1\,

similarities

c. Backup procedares, to confirm convergence. In Fat

MDSCAL algorithm [28], the technique employed to miti

^.r."1.
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local minima problems is to retain after arl, iteration the capability of returning to
the configuration prior to that iteration if either stress has increased by '20% or
more, or if the angle of the gradient after the iteration (computed to determine the
direction of movement for any point) is close to being direc0 opPokite (180°) to ;
its value prior to the iteration.

d. Varying the target distances. The distances that the configuration points are
attempting to match are of crucial significance to the local minima problem. While .1
the d of Kruskal have the advantages of speedily converging (when,used with a
sensitive step-size adjustment procedure). they have the disadvantage of changing in
value between iterations. With both configuration distances and target distances
changing, smooth convergence is not guaranteed. indeed, erratic behavfor some-
times occurs. Lingoes and Roskam [33, pp. 133-136] have experimented with an
algorithm in which $he target distances are, alttrnatiyely, the d* (rank-image dis-
tances- used to minimize the Guttman-Lingoes coefficient of alienation) and the d
(moflotone- regression distances or disparities) used to minimize Stress. This
sequence of targets applied to experimental data in a succession of analyses showed
very low incidences of local minirla. They conclude that, although this strategy
involves more iteration! than one which stayed with the one set of target distances,
it is sufficiently impressive in avoiding local minima probleni that it is incorporated
in their revised algorithm MINISSA.

2. Interpretations of scale dimensions. One of the fundamintal Problems in the use

of MDS is that of interpreting the dimensions in which configthtiong mapped.

In some cases this particular problem does not arise because* the researcher' is
interested only in the position or relation of the configuration points with respect
to each other (for example, in determining clusters of stimulus paints). floWeVer, in

other cases the scale value derived from prpjecting any Eivn pdint onto an appro-
priate dimension of the space, is sought after. Under these circumstances the inter-'
prdtability problem arises.
, The problem of identifyiing the dimensions .of any configuration bas been

mlesolved in a number of different ways. For many of the geogilphical studies

errtiuned in this paper, sonic information is knoWn about the location-of stimulus
is in an objective space prior to the building of a configuraiion:"When this type

rmatiun is known, constraints con be placed.on the number df.dimensions in

whit output configuration is produced such that one attempts to replicate the

spatial s ore of the original objective configuraiiion. Thus in Tobler's use of

MDS algon, as map transformations, he is able t i orient configurations) n the

same way as selected map }projections are oriented, and to interpret distances'
according to dis ices measured on these projections. Siniilarly, in the urban
distance perception dies 4iscussed, later, the locations of ihe phenqmena being
investigated were known rior to the beginning of the Study, Culput cnnfigurations

could therefore be rotated, reflected', add translated until-the positional relations in
the output configuration have the same directional components as In the original

rt
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data. Iii both of these cases. the problem of identifying the dimensions themselves
are trivial ones. , .

In cases where the configuration of stimulus points is not known, considerablg
ingenuity has been used in order to interpret dimensions. Forexample, in one study

a° large number of pers al, social, economic,' and attitudinal
characteristics' were collected for each mple respondent, and various types of
characteristics were collected for the stimu oints. By investigating the scores of
stimulus points and individuals on unidimensional scales of each attribute, the
author was able, to interpret his dimensions by choosing those attributes which
appeared to be most highly correlated With the derived scale values. In mother
study (III-A-3), dimensions of the configuration Were interpreted in termsof
qualities of the stimulus objects that had been derived from independent scaling
analysis. Thus, When the,configuration of,stimulus points isi.unknown, it appears
that the most appropriate 'Method for identifying dimensions 'is to compare the
scores of each ,stitinlus point on each diniension with some prior selection of
attributes of the stimuli. Those attributes having the highest correlation with scale
values then lend themselves to use-in interpreting dimensions of the configuration.

Another point which is 'seldom discuised in the literature is that of the
positionineof the axis of the configuration space. It appears that, for the most part,
sc ues are referred to the centroid .of various configurations. This means in
effect tha an arbitrary zero point is established, and the data can be interpreted at
no Higher le el than an interval scale. In terms of the problems associated with
interpreting, c 'figurations, therefore, there are certain similarities with other
multivSriate ,tech 'ques such as principal components and factor analysis. We may
conclude that the are corresp.onding difficulties in the interpretation of.
dimensions just as ther e in these other metric methods of multivariate analysis.
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II. THE NON- METRIC ALGORITHM: A WORKED EXAMPLE

Our discussion to this point has centered on the objectives behind multidimen-s
sional scaling approaches and on the question of the appropriate criteria for evaluat-
ing goodness-of-fit. Several algorithms have been developed to meet the stated
objectives, and only recently have any systematic attempts been made to compare
the relative performances of the different algorithms [33, 43, 53, 62] . It is our
purpose here to explain multidimensional scaling through the mechanics of a hand-
worked example, and we choose in the example below to solve a problem using one
of these several scaling algorithms.

The particular one chosen was based on the availability, at the time of writing,
(of a clear description of the algorithm. The one used is that developed by Young
and Torgerson [61, 63] , and it is applied below to a very simple, hypothetical
problem.. In the following section of this paper we will discuss more realistic
examples. However, all such applications of multidimensional scaling techniques to
date have been with data containing too many points for solving in a hand-worked

_example in a reasonable length of time. Even the simple hypothetical problems
described below would take a day or so to solve by hand - calculator methods.

A. The First Example

The problem 14 outline ii:one ind4yhich the solution is known'at die outset, but
the worked examnle below is sucD/thal the information derived as a solution is not
explicitly contained, in any of the initial data from which it proceed,. The multi-
dimensional scahreproblem recall is essentially one of finding tholocations of
points in a %pace of any given number of dimensions such that an ordering of the
distances between points in this space best corresponds to an ordering of the points
in the original input data. Thus, it is implied that the researcher possesses knowl-
edge on the order relations between a set of'points (usuilY from experimental
data) and that he hypothesizes these order relations are derived frdm a mental
col. luration of the points (unknown, of course, to the researcher). The purpose of
the scaling, then, is to construct a configuration of points from which measure-
ments can be made between points on which the order relation corresponds to the
order relation of the interpoint distances in the experimental data.

In Figure 5 we portray an arbitrary configuration of four-points in two dimen-
sions, in Table 4t the distances between the points are shown; and in Table 5 the

order relation of these distances is shOwn. In the wbrked example, the information
of Table. 5 is the only part of this initial data that is used. However, since it is
derived from Table 3 which in turn is derived from Figure 5, it is possible tO check
the accuracy of the solution developed below by /Waring it with the arbitrgy
configuration in Figure 5. In brief, therefor, the plUlrem can be described as that
of deriving the essential properties of this figure solely from the information con-
tained in Table 5.
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''"
..

LE 3. COORDINATES.FOR THE ARBITRARY CONFIGURATION

e

":

1. Overall tegy. The. problem is solve in a sek.s of interations, each one of
which compATes four stages. We begin wkth a rando4f configuration of the four
points in twotlimensionsl- (the initial configuration).

i
The strategi for lolution is to move successively closer to they solution .on each
iteration, stopping when the index of fit shows that the previous iteration has
resulted in altew conliguiltion that is not superior to that Of the previous one.

t\ IN FIGURE 5.

2

.

Axis a Axisb
Point 1 1.0 1.7
Point 2 1.1 1.2
Point 3 05 * -2.0
Point 4 2.15 0.4

TABLE 4. INTERPOINT DISTANCES IN THE
ARBITRARY CONFIGURATION

1 2 3 4 1
1 0.0 0.5 1.09 1.75
2 0.5 0.0 1.25 1.30
3 1.09 1.25 0.0 1.60
4 1.75 1.30 1.60 0.0

TABLE 5. ORDER-RELATION OF DISTANCES IN TABLE 4

1 2 3 4
1 0.0 1.00 2.00 6.00
2 1.00 0.0 3.00 0

" 3 2.00 3.00 OM 5.00
- 4 6.00 , 4.00 5.00 0.0,

2. The four stages. Step 1. Computation' of distances: Distances between the points
of any configuration are computed fr' the formula:

f t

d.. = E ( I Xia,
,

I t/m

a

t
(14)

tThe worked example does not exactly par lel the method suggested by Young and Torger-
son [631 since. in the interest of reducing the I number of iterations required to react( a
solution. they suggest a strategy of first preparing an initial configuration by assmpung metric
properties in the input data and then optimizing the configuration by the method outlined
below. In the first section of this example we confine ourselves to a discussion of the lion-
metric algorithm since this is the essential step common to all multidimensional scaling tech-
niques The computation of initial configurations with properties approaching final configura-
tions is discussed later in this section.

. 28
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,

o

...,. q-_, y . .,
,...-

--_where i And j represent any two points in the configuration, xia and x.a are the
coordinates of the points on axis a, r is the numb li of axes (dimensions) for which
the solution is being computed, and m is the Minkowski constant [52] determining
the type of distance metric for which the solution is being determined,.444.,
Euclidean distance has the Mi,nkowski constant of 2. . -

s..,

Step II. Computation of monotonically transformed distances (disparities): The
purpose of this step is to constrain 1lre distances from the given configuraticiti so
that they do not violate the order relatfon'Of the originaljrierpoint tlistalices (in
this case, Table 5). This is achieved by eoisuriiik that if one were to plot the valires
of this table (y axis) against the monotonically transformed values of Tab e 7(:i_
axis), the "curve" joining these points would never move to the left bt t only
vertically or to, the right. These monotonically. transformed distances Are known as
"digparities1'; they are not distances from anylicnown configuration but rather are a
monotone sequence of numbers as "nearly equal" to the distances in the given
ganfiguration 'as is possible without violating the original order relation of
interpoint distances. .It Is reiterated that 'the purpose of non-metric.
triultidimensional scaling if to construct a configuration of points in anyi given
Amber of dimensions such that tht interpoint distances and the monotonically .
constrained distances (disparities) are as similar as is porEibie [28, 29, 61].

....
'' .

TABLE 6. COORDINATES FOR'THE INITIAL(RANDOM) CONFIGURATION.
. : IN FIGUjp 5' , ,.. .

1.1.

Point 1
Point 2
Point:3
Point 4

.....
Axis a
4.70
3.60
1.30
1.70

0
I Axis b

.'0.10
-3.90

. 3.60
1.00

,4-4?-44 Of

TABLE 7. INTERPOINT DISTANCES IN THE INITIAL CONFIGURATION 1

........

0814.414,4**40.

,.("
1

1 0.0
2 3.95 ,

t , 3 P4.88./-.

0 4 3,14 ` 3.47
_

r 2'.637\ '0:0

(
, .

The disparities are *Fomputed by taking the -interpoint distance from the
sonfiguratiOn (Table 7), corresponding to the two fnQst similar pbints (smallest
distance) in the original data (Table 5) and comparing It With the distance that
corresponds with the next two most similar points. If the first distance is smaller
than the second, then the order of the distalices corresponds with the order of the
original similarities and no transformation is necessary. HoWever, if the first
distance is larger than- the second, then the original order elation of interpoiln
distances is violated; since the disparities must not decrease in value when the
similarities increase, the arithmetic mean of the two distances is substituted foi the

2
3.95

04.0°
2.31 .

3
. 4.88

2.31
0.0

'c 4
3.14
3.47

,...2.63

30
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distances and this mean becomes 'the first two disparity values. The interpoint
distance from the configuration corresponding to the third smallest original simi-
larity (Table 5) is then compared.with the second, disparity (whichmight be. the
second distance or the mean of the first two distancesas discussed above). If.the
third distance is larger than the second disparity, it becomes the third disparity;
otherwise, the mean of it and the previous disparity (weighted mean if the previous
disparity was composed of more than one distance) is computed, and this mean
becomes the disparity value for the third distance and seconddistance (also for tie
first distance if the second disparity was itself a mean value). In the first iteration of
the problem described belOw, the disparities will be computed step by step follow-

,ing the procedure outlined- above.
Step III. Computation of goodness-of-fit (Stress): The measure of gotidness-of-fit

is a measure of, how far the disparities,(a.i) depart from the distances measured
from the derived configu-ration.(dij). The !larger these departures are, as compared
with the distances themselves, the greater the error in reproducing the, order relax

°
tion of the Original similarities, from the derived Configuration and therefore the
poorer the fit. ICrbskal's'"stress" valbes as defined'in equations (4) and (5) are both
computed in the example outlined here. The smaller the stress, the better the fl)t.

Step IV. Computation of a dew (iniproved) configuration: As noted, the greater
the discrepancy between the distances and disparities from any configuration, the
poorer the configuration. Therefore, to improve any given configuration each point
should be moved so as to reduce the average discrepancy between the distances and
the disparities with respect to the other points [29, pp. 117 123;61, pp. 6-7] ..lf
d. > d.' then point i should be moved closer to point j by an amount proportional
to the size of the discrepancy. Thus, ceteris 'paribus, after this adjustment the
'discrepancy ao should 1p smaller on the new configuration than on the
previous one. However, since for each of n points there are n 1 distances to the
other points, there will. be n 1 possible adjustments for each point. Tlie mean of
these possible adjustmerTh is the actual adjustment that is made. In the worked
example that follows, the formulae used are from Young [61p. 6]. The displace-
ntent of point; with respect to point j is given by:

C.,

- .

c.. = a (d.. a ) ,(.. _.. ) /d.. (15)-
Ija 1.1 di j) (xja la 1.1

. . .'
where do.iare dis,tances computed from the previous configuration,

.
clO are the disparities (monotonically transformed distances) from the pre-

vious cpafiguration,
xja and'xia are the coordinates of oir i and j respectivelx, on axis a,

d a is a constant q proportionality.
The new position of point i on axis a is the coordinate on the previous configura-

tion plusghe means of the correction vectors defined in (15) above:
n

c. (dij 7 a - >vdis n Ja is ij
j = 1

31
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=ta X. Cia

A.
A

Alternative formulae for reaching the same goal are discussed elsewhere, [29, pp.
.117-126 ; 18, pp. 484-500; 43, pp. 23-29j .

In the literature of Multidimensional scaling, alpha is commonly referred to as
the "step-size parameter." Much discussion has centered on the question of modify-
ing the value bf alpha as the iterations converge on a solution [18, pp. 491 492,
29, pp. 121-123; 43, pp. 23-29] . In the method of computing revised configura-
tions used in this example, larger values of tlpha would speed up convergence (that
is,' lead to a given solution' in, a small numbel qf iterations) but subject to the-
constraint( that if alpha becorde too large, there is the danger of moving the points
inany revliKd soaliguration too far. Iii this example, for the sake of simplicity:
alpha is givenlfie.vaitie t

..;

3. Application of the four stages to the sample problem. Step I. Compute the
distances: Applying formula (14) to the coordinates of the initial configuration
(Table 6) yields the information in Table 7: is

eg, d23 = [(x2a
X3:)2 (X2b x36)?]i 2

= [(3.60 1.30)1+ (3.90 3:60)211/2

= 2.31 ., 1

Step H, Compute the disparities: Following the ordqr relations of the distances
in the original arbitrary configuration (Table 5), the distances in Table 7 must be
transformed -so that their order does not violate the order of Table 5. This is
achieved in a series-of trials as set out in Table 8 below. In Trial 1 the distances in
the initial configuration corresponding to the first two distances in the original data
are seen to satisfy the constraint of ascending order. However, the third distance
(2.31 in Table 7) violates this order, and therefore in Trial 2 it is combined with the
previous distance (4.88) to produce a mean of 3.60. Since this new number is
smaller than 3.95 (the first distance) it must be combined to produce a new dis-
parity'of 3.71 (Trial 3). In such a manner, the final set of disparities are computed
in Trial 6 where all have the value of 3.39.

Step III. Compute stress: Applying formula (4) to the distance-values in Table 7
and the disparity values on the final trial in Table 8 yields:

, .

E aii)2 1 /2

_ <
Sl E dij2

i < j

32
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. 73.571

a

.1703908 = 0.234; (S; = 1.0).

TABLE 8 COMPUTATION OF DISPARITIES IN THE
INITIAL CONFIGURATION

Corresponding
Interpoint distances in
order in initial

original data configuration
Disparkies(ao)

Rank (Table 5) (dig) Tnal 1 Trial-2 . Trial 3 Trial 4 Trial 5 Trial 6

1 1.2 3.95 3.95 3.71 3.65 3.45 3.39
1,3 4.88 4.88 3.60* 3.71 3.65 3.45 3.39

.3 2, 3 2:31 2.31* '3;60' 3.71 3.65 3.45 3.39
4 2, 4 , 3.47 3.47 3.65 3.45 3.39
5 -3.4 2.63 2.63* 3.45 3.34
6 1.4 3.14 3.14* 3.39

*indicates rank-order violated

Step IV. Compute a new configuration. Applying formulae (15) and (16) and.
substituting the distances from Table 7 and the &panties from Table 8, the adjust-
ments to the coordinates on both axes of the initial configuration are.ompuYed
below.

Point 1 on Axis I

ITERATION 1

(3.95 - 3.39) X(3.60 - 4_70)/3.95 = -0.16-from formula (16)
(4.88 - 3.39) X 1.30 4.70)/4.88 = -1.04
(3.14 - 3.39) x (1 70 -4.70)/3.14 =, 0.24

mean move (alpha =4.00) -- from formula (17)%

Point 2 on Axis 1
13.95 3.39) x (4.70 - 3.60)/3.95 = 0.16
(2.31 - 3.391 x (1.30 3.60)/2.31 = 1.08
(3.47 3.39) X (1.70 - 3.60)/3.47 = -0.04

0.30 is mean movralpha = 1.00) -- from formula (17)

Point 3 on Axis 1 _

,r
(4.88 - 3.39) x (4.70 1.30)/4.88 = 1.04
(2.31 - 3.39) x (3.60 1.30)/2.31 = -1.04
(2.63 - 3.39) x (1.70 - 1.30)/2:63 = -0.12

-0.04 is mean move (alpha = 1.00)
A

4'W
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Point 4 on Axis i
(3.14 - 3.39) x (4.70 -
(3.47 3.39) X (3.60 -
(2.63 - 3.39) x 0.30 -

-0.02 is mean move (alpha =,1

1.70)/3.14 = -0.24
1.70)/3.47 = 0.04
1.70)/2.63 = 0.12

.00)

Point 1 on Axis 2
(3.95 - 3.39) x (3.90 - 0.10)/3.95 =
(4.88 3.39) )(*(3.60 - 0.10)/4.88 = 1.07
(114 - 3.39) x (1.00 - 0.10)/3.14 = -0.07

0.38 is mean move (alpha = 1.00)

i'oint 2 on Ails 2 .

(3.95 - 3.39) x (0.10 - 3.90)/3.95 = -0.54
(2.31 - 3.39) x (3.60 - 3.90)/2.31 = 0.14
(3.47 - 3.39) x (1.00 - 3.90)/3.47 = -0.07

-0.12 is mean move (alpha = 1.00)

Point 3 on Axis 2
(.4.88 - 3.39) x (0.10 -

' (2.31 - 3.39) x (i90 -
(2.63 - 3.39)'x (.00 -

3.60)J4.88 = -1.07
3,60)/2.31 =--0.14
3.60)/2.63 = 0.75

'-0.11 is mean move (alpha = 1.00)

Point 4 on _Axis 2
(3,14 l 3.39),X (0.10 - 1.00)/314 = 0.07
(3.47 - 3.39) x (3.90 - 1.00)/3.47 = 0.07
(2.63 -.3.39).x (3.60 - 1.00)/2.63 = 0.75

-0.15 is mean move ( alpha.= 1.00)

The new coordinates are computed by adding the mean move of any point on
any axis to the prior position of that point on that axis. Thus, from Table 6 and the
computations above a new set of coordinates is calculated:

Point 1 on Axis 1: 4.704- -.24 = 4.461
'Point -1 on Axisr2: 0.10 + 0.38 = 0.484
Point 2.on Axis 1: 3.60 -1,0.30 = 3.897
Point 2.on.Axis 3.90 +s-.12 = 3.784

-.
Point 4 on Axf.s."1:1.00 + -.1,5 = 0.84.7

* *Missing information nay be calculated from information previously given.

34
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,

TABLE 9. CONFIGURATION

4

1 ,

4.461
3.897
1.262
1.680,

2
0.484
3.784
1486
0.847

Step V. Compute the new distances (ie., repeat Step I). The, new interpoint
distances can be calculated from formula (14) and from the cpardinates,given
above:

e.g., di = [(4.461-:3.89 7)2 + (0.484 73.784)21 4 /2

11.2.78T 'A

101*.

= 3.348

Remammg distances can be calculated from data in Table 9., above. They will have
the valueihrqable 10, Below:

TABLE 10. DISTANCES

.

Step VI. Compute the new disparities (ie., repeat Step II): These new values are .

1

,

.

:

1

0.0
3.348
4.387
2.805

2
3.348:
0.0
2.652
3.680

3
4.383
2.652
0.0
2.672

t

4
2.805.
3.680
2.672
0.0

given in Table 11. ' .
Order of inter-
point ilistances

- Distances in
the new

Disparities

in iriginal data configuration Trial 1 'firian Trial 3 Trial 4 Trial 5

1.2 3.348 3.341 3.348 3.348 3.348 3.257
L3 4.387 4.387 3.520 3.520 3:348 .3.257
2.3 . 2.652 2.652 3.520 3.520 3.348 3.257

3.680 3.680 .3.176 3.348 4.257
3.4 2.6721 2.672 3.176 3.348 3.257
1.4 2.805 , 3.348 3.257

2.805 3.257

order relation violated

TABLE 11. DISPARITIES

1 2 3 s. 4'
0.0 3.257 3.257 3.257

2 3.257 0.Q 3.257 3.257
3 3.257 3.257 0.0 3.257
4 3.257 3.257 . 3.257 0.0 .

35
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Step; VII. Compute the new stress repeatStep III). Applying formula (4) to
the distance values of Table 10 and the disparity values of Table 11 yields.

Si = N/TRT:- = 0.1897:
66.03

S = 1;002

(Compare with previous stress value of 0.243 in Step III above.)

The second iteration and' those that follow begin with Step IV and repeat
Steps V; VI, and VII. Results of these steps are given below. All necessary
information for computing the results below is given in the description of the
first iteration.

ITERATION 2

Compute a new configuration:

-10
Point 1 on Axis 1 '

(3.35 - 3.26) x (3.90 - 4.46)/3.35 = -0.02
-(4.39---- 3.26) x (1.26 - 4.46)/4.39 = -0.82

(2.80 3.26) x (1.68 - 4.46)/2.80 = 0.45

- .10 is mean move (alpha = .1.00)

. \s,Point 2 on Axis 1
(3.35 3.28) x (4.48/- 3.90)/3.35 = 0:02
(2.65 - 3.26).x (116 - 30)/2.65 = 0.60
(3.68 - 3.26),x 01.68 J7.-190)/3.68 = -0.25

-
0.09 is mean move (alpha 1.00)

Point 3 on Axis 1
(4.39 - 3.26) x (4.46 - 1:26)/4.39 = 0.82
(2.65 - 3.26) x (3.90 - 1.26)/2.65 = -0.60
(2.67 - 3.26) X 0.68 - 1.26)/2.67 = -0.09

0.03 is mean move (alpha = 1.00)

Point 4 on Axiso1
(2.80 3.26) x (4.46 - 1.68)/2.80 =
(3.68 - 3.26) x (3.90 - 1.68)/3.68 = 0.25'

'(2.67 - 3.26) x (1.26 - 1.68)/2.67 = '0.09
-0.03 is mean move (alpha = 1.00)

Point 1 on Axis 2
(3.35 - 3.26) x (3.78 - 0.4g)/3?35 = '0.09

9 (4.39 - 3.26) x (3.49 40.48)/4.39 = 0.77
(2.80 -2- 3.26) x (0.85 - 0.48)/2.80 = -Q.06

. ,1 -1

0.20 is mean Moire (alpha =

36 .
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4

4,

`Point 2 on Axis 2
(3.35 - 3:26) X t0.48 - 3.78)/3.35 = -0.09
(2.65 - 3.26) X (3.49 - 3.78)/2.65 = 0.07
(3.68 - 3.26) x (0.85 - 3.78)/3.68 = -0.34

-0.09 is mean move (alpha = 1.00)

Point 3 on Axis 2
(4139 - 3.26) x (0.48 - 3.48)/4.39 =, -0.77
(2.657 3.26) x'(3.78 - 3.49)/2.65 -1-0.07
(2.67 7 3.26) x (0.85 3.49)/2.67 =- 0.58

-0.07 is mean move (alpha = 1:00)

Point 4 on Axis2
(2.80 - 5.26Tx (0.48 - 0.85)/2.80 = 0.06'
(3.68 - 3.26) x (3.78 - 0.85)/3.68 = 0;14
(2.67 - 3.26),X (3.49 - 0.85)/2.6A -0.58

-0.05 is mean move (alpha = 1.00)

2
3
4

CONFIGURATION

1 2
4.364 0.685
3.987 3.694
1.295 '3.420
1.655 0.801

'Compute the new distances from above configurations::

DISTANCES .;
1

..--1 2 3 -Ii
1 _ CI:Cf: 3.033 4.111 2.'712

' 2 3.033 .0.0 2.707 3.716
3 4.111 ' 2.707, 0.0 2.643
4 2,712 -.311716- 2.643 0.0

Compute the new disparities:

DISPARITIES

1 2 3

1 0.0 ,3.033 178
2 3.033 0.0 ,178
3 3.178 3.178 0.0
4 -3.178 3.178 3178

37
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3.178
3.178

. 3.178
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IV. 'Compute the new stress:

STRESS

S1 = 0.1750; (S2 = 4)
.

61.57

(Compare with previous stress value of 0.1897.)

ITERATION 3

I. THE NEW CONFIGURATION
.

....' 1 ' 2 --- .

4.366 ' . .0.835
4.020. 3.60h

3!. 1.333 3.385
4 1.641 0.779

-i o II DISTANCES.
4tz.-

A
1 4

1 0.0. 2.781 3.916 ,2.666
2 2.781 0.0 . 2.695 13.692
3 3.91-6 2.695 0.0 ,2.625

4:-.4
4 2.666 3.692 2425

"III. DISPARITIES.

1 2 3 4
0.0 T.781- 3.119, _3.119
2.7,81 '9.0 3.119 .i3.119-
3.119 . 3.119 0.0 3.119
3.119 3.119 3.119' 0.0

IV. STRESS ' 1-.

I. , '
S = ,/ .59:. = 0.1658; (S--1= 0-.9714)

1 - ,.....-
----,-;.,.:

57.96
.

2
t e

. . : , ,-,.,''... . . - - . 0 0 --'-
. . . 4 ) N. . , , : . . , , -

. ' Further iterations are possible (and desirable- Since they will result iftlower stress ----,

values; and all necessary information is given above for the reader to continue these
iterations.As a che4k on computation the results of two iterations along the path

. to the final solution are given below. ;

4 att#9044,,,_
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I
, tfE RATION I 1

.43
; I. CONFIGURATION

o.

1

2
3
4
.1

/i 'i

1

- 4.136
"' 4.037

1.455
1.671

2
1.633
2.867
3.404
0.696

. is" II. DISTANCES
1 °2 3

q.o 1.237 3.213
1.237 0.0, 2.638 3.

4
2.638

1.213 2.638 0:0 7 2.717,
2.638 3.211 2.717 s' 0.0 .

1

1 0.0
2 1.237
3 2.883

2.883

III. DISPARITIES

3
1.237 3.883z.,.:
0.0. =4. 2.883

.2.883 0.0
2.883 2.883

IV. STRESS

S1 = 0.0916;(S2 = 0.3731)

ITERATION NY:,
1'

I.'CONFIGURATION

2
'4.072 2.046
4.039 * 2.449
1.483 , 3.455
1.706 0.649

II. DISTANCES

1

:re

4

,.1
, 0.0

0.404
3 2.947
A, 2.747

4 ;
2.483N6'
2.883
2.883
0.0

2 j . i 4 ..
. , 0.404 .,41...2.9\0 ,2.747

0.0 \ 21747 2.947
2.747,..." 0:0 ' 2.815
2,947 2.815 . 0.0, v

. ,

1

M. DISPARITIES
.

2
1 0.0 0.404 $2,841
2 - .0.404 0.0 2.841
3 2.841 2.841 0.0
4 . 2.841 2.841 2.841

- ...

-141,

*

2,841.%
2.841
2.841
0.0 . -

.19 : 1

el; -'P
- .

,,00650
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IV. STRESS

S = 0.0317 (S2 = 0.0904)

FINAL SOLUTION

After 30 iterations, stress was reduced to a value of 0.0085; Other results were as
shoZ,vn below:

1

2
3
4.

CONFIGURATION

1 2
4.054 2.194
.4.046 2.301
1.488 3.465
1.7 13 0.640

"ir-

O DISTANCES

1 2 3 4
0.0 0.108 .w 2.864 2.810

2 0.108 0.0 2.810 2.864
3 2.864 2.8 10 0.0 2.834
4 2.810 2.864 2.834 0 0.0

DISPA ITIES

g 1 2 3- 4
1 0.0 0.08 2:837 . 2.837-
2 0.108 0. 2.837 2.837
34"' 2.837 2.837 0.0 .2.837
4 2.837 2.837 2.837,- 0.0

STRESS

Si = 0.0085; (S2 = 0.0216) .

4. The ilioblem of the initial . configuration. A , recent4improvement in

multidimensional scaling algorithms has resulted from the search for a method 9f
deriving an initial configuration that would, 'be closet to the final solution
configuration than an. arbitrary orratglowne [62, Pp. 1'8-20] . There are l'wo
reasons -to support sitcli A search. first;.4.(,s clear that fewer iterations of th%,,
algori,thtn will h'e'requiii,ed if the'initiel arifiguration is c1e)e to the solution con-
figuration, thus, a con- siderable, saving in computing time fs achieved. Secongl,since_
, . ..-
the method of computing the monotonically transformea distatteesTdisparities) is a

, . .
weak tnonotonic transformation in that it often results in the tying of untied
original similarities data, and since'the goodness -of -fit Criterion is a measurement of

/
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A

Or
. .

ea
the reduction in the squared differences-between the configuration distanced awl,.
the disparities, degenerate "solutions" are possible in which stress is veiy Small but
in which only the weak-monotonicity' requirement 14s been met [43, p: 16] . (A
strong monotonit, requirement is one in which the monotonically transformed
values diaease when the original similarities increase and are tied when the.simi-
!grilles data are tied. This L.nterion is met by Guttman's rank-image transformation
with the addition of his strong-monotonic requirement [18, pp. 479-482] .) The
different methods of delermining initial L.onfiguratio'ns in the various multidimen-
sional st.aling app outies will not be reviewed here. Discussions are available else-
where [43, p. 6 57, pp. 254-258; 62, pp. 18-20] . HoWever, the advantage of
beginning he ries of iterations outlined in the First Example with an initial
configuration closer,,to the final solution oinfiguration can be illustrated by return-

, ing to the First Example and recomputing the.solution adopting this approach. The
first stage, in this case, is to apply the metric method of TorgerSon [59, pp,le,254 258] to the initial similarities to compute the initial configuration ur 6).

This method i.onsists of computing the two (since this is the proposed dime ional-

' ity of the solution being sought) largest eigenvectors of a matrix of scalar products
computed from the initial similarities data. - .1

.
3

4 .

I

*2

(15Figure 6. The Initial Configuration Derived from the Metric Approach of or-
gerson on the Original S(milaritzies . .

. .,-
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e

ORIGINAL SIMILARITIES (see Table 5)

1 2 3 4
1 0.0 1.000 2.000 6.000
2 1.000 Q.0 3.000 4.000
3 2.000) 3.000 0.0 c' 5,000
4 6.000 4.000 . 5.000 0.0

..41) I. CONFIGURATION

.F .-...
1 2

I -0.589 --0.127
2 -0.073 , -0.125 a

- 3 -0.288 e.- . 0.426
4 0.951 0.025

1

2 .

3 -
4

4. DISPARITIES

- II. DISTANCES . -
1 2 3 . 4

0.0 0.553 0.629 :548
0.553 0.0 0.780 1.082

?oo

0.629 0.780 0.0 1.302
1. 48 1.082 1.302 0.0

I, 2 4 ' 3 4
`1 0 0.0 0.533 0.629 ' . 1.. 548 -... ,'"
2 li 0.553 0.0 0.780 1.082
3 0:629 , 0:780 00 '..- 1.302
4 . 1.548 \-1.082 1.302 o:o.

...)
IV: STRESS

S
i

= 0 . 0 . . . ;
. .

, .

With the First Example, the initial coi4figulation using Torgerson's metric
. .

method yields a better solution Wan he non-rnetrie algorithm described -earlier
after 30 iterations. 'his result supports the conclusion that abetter final solution
will more likely be ibund if such a method is used to derive an initial configuration.
The First Example is artificial iNthat it was derived from metric data, and therefore
it should not be surprising that a metric K-e-thod can successfully recover the
original 'conTiguration from which the original similarities were derived. However, in. .
more realistic examples, it normally is the case that substantial improvements are
made to the metrically

previously:
initial configuration by the non-metric algorithm

such as'the one discussed previously:

I

The Second Example

This worked example, differs from the previous one in that the similarities*
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between points with which tfie scaling begins are derived from field question-liaire
responses. The existence of a configuration is thus a hypothesis, audits true dimert
sionality is also unknown at the outset. The similarities data result from a paired,-
coniparisdns treatment of the towns chosen by a random sample of Iowa rural
households, for major grocery expenditures [451. This study is-described in water
detail in ,a later section of this paper. Specifically, the data indicate,the absoltte
value of the difference from 0.5 of.the relative frequency with which towns at one
range of distance and belonging to a town-size-distance class are regarded as stimuli:
Since the stimuli can be decomposed into the two component artfof town size
and distance, the purpose of the scaling approach is to det mine the relative
trade-off between the-4wocomponents. thus, we wish to an wer the following
question for any and all cojnparisons. How much nearer or fuhher should a town
of a given size bes in order to be just preferable to a second town of a giventsize at a
given distance?

In computing these disparities, a' problem resulting from ties in the original
similarities is encountered. This problem did. not occur in the First Example,
though in practice it is a very commoik one. It is solved here using the "primary
approach" [43, p. 91. In this appi.oach, an order relation within a tie is determirffd'
from the numerical order of the corresponding distances from the configuration.
This is in contrast, to the "secondary approach" in which the distances from the
configuration are first averaged into a block corresponding to any tied values in the

.original similarities data. Since the primary approach may result in disparities that
are itifferent for tied values in the original data, wheats this' cahnot happen with
the-secondary approach, the fo),meOis known as the weak monotonicity appech.
and the latter is knciwn as the semi -weak monotonicity approach. [43, p. Mitt

The original similarities for this Secdhd Example are shown in Table 12 below.

-TAB LE.i2,OR., SIMILARITIES °

1

2
,3
4
.5.
'6

)

-

'

Q.0
0.430
0.330
0.140
0.400

-0.340

'
0.430
0.P

-0.50Q
0.410
0.500
0.470

0.330
0.500
0.0
0.370
0.300
0:12.0

0.140
0.410
0.370
0.0
0.500
0.390

.

, .

' --

0.400
0.500
0.300
0.500
0.0
0.500

,
0.340
0.470
0.120 .

0.90
0.500
0,9

.
I 0 %

Computing tile scale in.one dimenMon,,the initial (random) configuration had the
coordinates: '- .,..! - -. LI,

4.
Random

Point Coordinates
P

..1 .'I 0.626 `-.
-2 ' 0.940 :"'

3 , 0.4'93 `--;-', *.'
...

4 .
S

0.713
A 5 \ 0.497

6 . ,.. ..7, 0.907
- , . .
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o

The distances and disparities for this initial configuration are shown below.

INITIAL DISTANCES

1

1

3
4
5

6
,t)

2

.314

3

.133
447

.
4

.087

.227.
.220

5

.129
443
.004
.21,6

d

6

.281

.033

114
.194
.410

1

2
3,
4

-5
6

0

INITIAL DISPARITIES

2 3 4
, -

.199 .160 .160
.447 .199

.199

ITERATION
(-

1
%

POinf 1 on Axis 1
2 (0.31 = 0,20) X (0.94 -

. (0.13 0.)-6) X (0.49 -
.4 (0.d9 - 0.16) X .71 -
5. (0.13 - 0.204 X (0.50 -

06 (0.28- 0.20) X (0.91

5 6

.199 '.199

.443 .199
'.160 -.160

4 .2)6 .199
.410

0.63)/0.31 = 0.12
0.6V0.1.3 = 0.03
0.63)/0:09,= -0.07
0.63)/0.13 = 0.07
043)/0.7,8 = 0.08

0.94 is mean move (alpha =-1.00)

Point 2 on Axis
1 -(Oil - O. 45e(0.63 - 0.94)/0.31

(0.45 - 0.45) x(0:42 - 0.94)/0.4.5 = 0.0
- 0.20) x (b.71 -.0.94)/0.23 = -0.03

5 (0.44 - 0.44) x (0.714- Q.94)/0.44 = 0.0
6 (0.03 - 0.20) X (0.91 - 0.94)/0:03 = 0.17

0.00 is mean move (alpha = -1.00)

Point 3 on Axis 1
1 (0.13:- 0.16) x (0.63
2 (0,45 045) x (0.71 -
4 (0.22 0.20) X (0.94 -

'5 (0,00 - 0.16) X (0.50
6 (0,41 -0.16) '(0.91 -

-.0.4'9)/0.13 = -0.03
0.49)/0.45 = 0.0
0,49)/0:22 = 0.02
0.49)/0.00 = -0.16 A
0.49)/0.41 = 0.25

-

* 0.02,im an move (alpha = 1.60)

.4*
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Point 4:on Axis 1
1 (0.09J- 0.16) X (0.63
2 (0.23 - 0.20) ic (0.94 -
3 ) (0.22'- 0.20) X (0.49
5 (0.22 - 0.22) X (0.71
6 (0.19 - 0.20) X 0191 -

0.01 is mean move (alpha = 1.0

Point 5 on Axis I'
/1 (0. L3 -e0.20) XJ(0:63 -

2 (0.44 - 0.44) X (0.94
3 (0.00 - 0.1-8) X (0.49
4 (0.22 - 0.22) X (0.71 -
6 (0.41 7 0.41) x (0.91 -

I`

0.71)/0.09'= 0.07
'9.71)/0.23 = 0.03
0.71)/0.22 = -0.02
0.71)/0.22= 0.0
0.71)/0119 = -0.00

0)

0.50)/0.13 = -0.07
0.50)/0.44 = 0.0
0.50)/0.00'= 0.16
0.50)/0.22 = 0.0
0.50)/0.41 = 0.0

0.01 is mean move (alpha = 1.00)

Point 6 on Axis I
- 0.20) x'(0.631 (0.28

2 (0.03
3: (0.41
4 (0.19
5 (0.41

- 6.20) X (0.94
- 0.16) X (0.49
- 0,20) X (0:71
- 0.41) x .(0.50

0.91)/0.28 =,:'0.08
-.0.91)/0.03 = -0.17

0.91)/0.41 = -0.25
- 0.91)/0.19 = 0.00

0.91)/0.41 = 0.0

I. CONFIGURATION

II: DISTANCES

0.663
0.944
0.508

-0.725
0.511
0.824

4

1 2 3 . 4 5 6

!I 0.0 0.281 ,0:15,5 0.063° 0.151 0.161
2 0.28 ? 0.0 0.436 0.218 0.432 0.120
3 0.155 0.436 0.0 0.217 . 0.003' 0.316 ',
4 ' 0.063 0.21.8 0.217 0.0 . 6.214 0.099
5

6
51

Q.

0i
61c)

' 0.432-
0.120

:0.003
0.316

0.214
0.099

0.0
0:313

0.313
0.0

r
iw

4:5

A

00056-
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III. DISPARITIES

1 2 3 4 5 6

1 0.0 0.026 0.155 0:127 0.157 0.157
2 Or:2206 0.0 0.349 0.206 0.349 0.206
3 0.155 0.349 0.0 0.157 0.127 0.127
4 0.127 0.206 .0.157 0.349 0.157
5 0.157 0.349 0.127 0.349 0.0 0.349
6 0.157 0.206 0.127 0.157 0.349 .0.0

IV. STRESS

1
= N/Tr =L 0.3497..-

.89

ITERATION 2

I. CONFIGURATION

0.666
2 0.915
3 0.544
4 0.741
5 0.517,'
6 0.793

II. DISTANCES

.

1

2
3.
4

. 5

6

2
3
4
5

6
.

-'

1
-
0.0
0.249
0.123
0.075

.0.1.50
0.1'27

-.:

1

0.0
0.186
0.123
0.117
0.150
0.126,

2

1

[0..249
4:1

0.372
0.1.74
0.399
0.122

2

0.186
0.0 -.
0.318
0.174
6.31,8
0.186

3 4
.

.0.123 , 0.075
0.372 0.174
0.0 0.197
0:197 0.0

. :0.027 0.224
0.250 0.052

HI. DISPARITIES,

3

0.123 0.117
0.318 0.174
0.0 0N-26
0.126 0.0 44,,,,,,

' 0.117 0.318
' 0.117 0.126

5

,0.150
0 399
0.027
0.224
0.0
0.277.

5

0.150
0.318
0.117
0.318
0.0
0.3,1

6,

0.127
0.122
0.250
0.052
0.277
0.0

6

..0126
'0.186
0.117
'0.126
0.318
0.0

f

46'
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W. STRESS

S
1

= 0.3081

ITERATION

I. CONFIGURATION

1

2
3
4
5

6

1

2
3
4
5
6

1

0.0
0.192
0.064
0:053
0.172
0.083

1

0.0
0.153
0.086

,- 0.086
-0.153
0.086

1

2
3
4
5

6

2

0.192
0.0
0.256
0.140
0.365
0.109

2

0A53
0.0
0.275
0A53
0.275
0.153

EL DISTANCES

3 4 ,

0.064 0.053
0.256 0.140
0.0 0.117.
0A 17 0.0
0.108 -0.225
0.147 e.031

.m:ptsPARrnEs

3 4

0.086 0.068
0.275 0.153
0.0 0,086
0.086 0.0
0.086 0.275
.0.086. 0.086

1

0.681
0.873
0.617
0.733
0.508
0.764

5

0.172
0.365
0.108
0.225
0.0
0.256

5

0.153:
0.275
0.086
0.275
0.0 .
0.215

6

r0.083
0.109
0.147
0.01
0.256
0.0

6-

0.086'
0.153
0.086
0.086
0.275
0.0

IV. STRESS

Sr = :230 -

After five iterations, the value of stress was .230; no further reduction in this
value took place during the next 25 iterations. Substantive interpretation.of the
resulting configuration is facilitated by Figure 7 where the scale values are iso-
plethed for graphical display of the tradeoffs between the two oonflicting stimuli of
distance and town size of consumer movement. From.thissfigure it is apparent that
Tor the purposes of making grocery expenditures, towns of less than 1,500 popula-
tion owe to proximity much of the patronage which they receive from tlIrural
population. In general, the Iowa rural population substitutes stores in small towns

47
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at close 'distances for stores in larger towns at greater distances. The advantage of
the result of the procedure is that, for the first time, we are able to
determine exactly the ciLumstanceS iii which one town will be mure fav'orable than
another for any and all rural looations.

2000

C

0

50Ci

o

i
PON T S

64.

POINT 6

.

.508 .764 ,

.60 .6 5 . 07- .75 . .80/ NPOINT3 Pout 7-

....

.6171 .733I
.

.

,
POINT I T AOINT 2
:

.681 - 87 I ' .111

o' 5

;
Distance to tows

J, (Miles)

Legend: Point "n:Imbe,*veference the stimuli numbers in
the tables in.; which scale vallies are cornpoted.

Numbers'
a

boxei-tre-icale values after the
. nth iteration.

i0 ;

. . .
Figure 7. Isopleth of Scale Values After the Fifth Iteration Interpolated Pref-.
erence Structure .

48 -
OF s'100059

Tr,



www.manaraa.com

,,,,.

HI. GEOGRAPHICAL APPLICATIONS OF MULTIDIMENSIONAL
.SCALING ANALYSIS

A

The variety of actual and potential applications of MDS is large and ranges over
many subsets, of the field .of geography. Perhaps the simplest way to arrange

. examples is to .divide them into those that use.simple space configuration (i.e.
conigurations of only the stimulus objects) and joint space configuration (le, those
which map the configurations of both individuals and 'stimulus objects).

- .
A. Simple Space Outputs

4.

We have constantly stressed that MDS programs can accept both metnc and
non-meuic input. it seems reasonable ,therefore fo give specific examples of each
type of research problem.

Map :transformations. Probably one of the most quoted examples of metnc input
-to a Nips program with simple space.Output. is Greenberg's "Roaeimap",problem
[171. The basic data here were the- inter-city road mileages between all pairs of 15

_ cities in the United States, that is. 105-or n(n-1) iriter-city distances. The data were

interpreted as similarities. databy ranking the distances with the shortest road
dLrance represented by rank 1 and the largest distance by rank 105, The output
consisted of a configuration of points in two dimensions (north-south and east;
west). Discreparicies between predicted configurauonsobtaaned from a non-metric ,

..multidirnensiona! scaling program -and actual cord:qui-awns were for the most part
small and.cou1d he accounted for by the =pre fact tha't road distances are rre-
quer.tly not the shortest distances between places but reflect Idetourircsund
r.atural and mtn-made barriers. 1", Cher words, rotations outputteclby the program
represent "true- locations if all toad c nnections between the parrs of cities .were , .
straight lines. The solution here repre;ents a type of map transformation smulatio
that which would be achieved if the places were located on an 'elastic map and
joined by lines representing actual roadways, and if the elastic were then stretched
in each ciirectios until all road lines were straightened out. . A

Note that in this example where metric input is used the first step in the
!Cortical algorithm is to convert the metric data to non-metric (ranked) form. Thns.....
the final configuration of points is obtained from non-metric information. This is
true of all analyses in non-metric multidimensional scaling. However, where the
researcher can have confidence in the metnc information he begins with, it is often
advantageous to resort to, a ,,metric multidimensional scaling. Tobler [54) has
pointed out that the problem of constructing mop'projections is one in tuch the
final meinc is usually known to be Euclidean and the number of f-dimensions known
to be two .1ordingly, he argues that empirical map projections might be designed
to produce, from :a matrix of empirical chsfances between points, the ;`best:' con-
figuration of the points in tv:o dimensions such. that the sum of the squares of the
difference between the onginal distances and the resulting configuration (snap)

_.
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distances are minimized. In other words, instead of beginning with a definition of
properties in the abstract that must be preserved, his procedure would be to begin
with observed distances between points in the space and design a projection to best
replicate these measurements. After-he had computed the 2,080 spherical distances
between a set of 65 regularly spaced latitude and longitude intersections covering
the United States. Tobler used Torgerson's me'tnc multidimensional scaling [57, pp.
255-258] to derive the plane map projection coordinates for the 65 points. Com-
paring the distances measured from this recovered configuration with the origirfal
spherical distances, he showed that the distortion, values were generally less than
two per cent. These distortion values, he concluded, compare favorably with those
on Albers' and Lamberts conical projections with two standard parallels.

In a second example of the use of scaling procedures to construct maps, Tobler,
Mielke, and Detwyler staled the geobotarkal distances between New Zealand and
some neighboring islands using inter-island distances Inferred from a model of the
dtyffusfon of plant species [55]: Basically, the authors attempted to examine the

to which floristic similarities between New Zealand and its neighboring
islands (of which there are eleven m all) could be explained by two geographic
factors. (a) the relative position of the islands and (b) the size of the islands. The
critical qbestion was what proportion of thg commonality of plant species could be
explained fully by these two factors? The model they constructed attempted to
answer this question by usfng floristics relations,to define geobotanical distances
which were then compared statistically with the islands' relative locations on the
surface of the earth._In other words, they attempted to identify quantitatively the
floristic relations of localities_ They fnen used these relations (expressed by the
number of species common to pairs of islands) together with island size and
assumed interaction between islands to diaw their geobotanical map. The dritances
between islanck on the map were then compared with great circle distances to give
some measure of the model's worth. Both the ,geobotanical distances and tikgreat
circle distances were inputted-Into a multidimensional scaling program (Guttman-
Lingoes SSA-I) and outputted in a two-dimensional Euclidean space. In this way,
the authors obtained an empirical map projection which preserves positional tele
lions in the least squares sense more accurately than any other possible map projec-
tion. The actual fit of the maps to the distances was approximately 98%. In specify-
ing the output configuration in _these terms, the authors simplified the
Interpretation of the dimensions of each configurationlar they'reprisented merely

as
the north. south, east. and west dimensions common to any other map projection.

D. G. Kendall [2:3] has extended the concept of recovering spatial coordinates
to that of recovenng temporal order. He has shown how multidimensional scaling
can be used to recover the temporal sequencing of a set of data in which it is
hyputhesrzed that events occuriing at a point in time contain information on occur-
rences that are known ter have been "in vogue" over periods or time. In his

.
a.exm' ple. the objects are tombs and the occurrences relate to the presence dr

absence of vane ties of objects. The input square similarities matrix (of tombs) is the
number of vanities common to the it" and it" tombs..Kendall shows how with
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-1/oth this data as well as with hypothetical data, the recovered configuration in two
dirnensions'is a horseshoe form. Ordering the tombs &Om the-order in which they
I

1
pear as. one moves around the horseshoeleads to a seriation of the tombs that is
iikingly similar to the serial positions of the tombs derived by classical archaeo-
gical seriation principles. This raises the intriguing possibility for historical geog-

raphers of designing research studies such that one might simultaneously hope to
I,
recover a spatial-temporal series. Wilkinson [59] has followed up Kendall's studies

. ot.,f seriation in archaeology using MDS by analyzing abundance matrices (i.e.
matrices. in which the values are non-negative and are weaklilinimodal in each
column) for the occurrence Of Hamiltonian circuits. Hamiltonian circuits are dg-
Tined as re-entry paths passing through each of m vertices in a linear gfaph only
once. In the examples Kendall studied, "graves vs. artefacts" matrices ,were com-
piled. von argued that the length of circuit in such matrices represents the
.. .
sum o ges of fashions in neighboring graves and allows for the development of
a m for the overall rate of change during a given period. The minimal Hamil-
tonian circuit gives the minimum period fora series of changes to take place. For a
given set of similarities data, finding this circuit involves ordering the terms column -

se, forcing a solution in two dimensions, preserving the order of interpoint dis-
ces fas well as, possible" [59, p. 14] , and then observing_if there is a clear

Hamiltonian arc. The presence of such an arc represents a check on the seriation in
a Configuration produced by MDS methods. 1

2. Preferences for politicians. The Uses of MDS in political science and political
geography afford another illustration of simple space output, but this time non -
metric input is used. Consider a situation where subjects are asked to state their
preferences for political candidates. In an experiment conducted on 1,000 members
of the Consumer Mail Panels and a selection of sociology students, Johnson [21]
asked for positions on 35 political statements and selection of two from a list of 14
prominent political figures. It was suggested that rankings obtained from such
prete nce data could be converted to their implied paired comparisons and, by
ad g over sample members, paired comparison proportions could be obtained
which were then summarized by Bradley-Terry scale values. These scale values are a
collectionOf numbers which sum to one, having thecharacteristic that the propor-

. 4isr
tion of individuals preferring stimulus "A" from among any collection of stimuli is
estimated, by the scale value of "A" divided by the scale values for the whole
collectionof stimuli.

The resulting similarities data could then Ire inputted into a standard MDS
program, a configuration similar to that produced by multiple discriminant analysis,
as shown in Figure 8, Would then be obtained. The naming of the dimensions in
Figure 8 was based on an examination of the responses which subjects made on the
extensive questionnaire concerning policy problems. Figure 9 shows the other
dimensions which were jnherent in the initial questioning andlhe position of each
politic:al figure in relation to those dithensions. Apparently, the configuration could
be.recovered m ,two dimensions with the 'liberal/conservative" and "government

(k- .
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involvement" axis appearing to summarize best the whole range of possible axes.
From the 'final configuration, of couist metric distarices between pairs of points
can be calculated and statements made as to the perceived "distance apart" of
individuals on each of the dimensions. -
Gras chae I

REDUCE GOVT.

-INVOL VT '

:K12

LIBERAL

Wallace

McOarthy

Realarl.
Lena),

LINEN it.
Kennedy

Humpitrey

Johnson

itygon

Eisenhower

INCREASE GOVT: '
INVOLVEMENT

CONSERVATIVE

Figure 8. Positioning of Political Figures-in Terms of the Two Key Dimensions-
(After Johnson, 1969)

3. Perceptual studies. Perceptual distance is another topic of study that appears
eminently suited to analysis by MDS techniques (with simple spaq output). Two
specific examples are the Golledge, Briggs, Demko study of intra-urban distances
[141, and Whipple and ":.liedell's Study of black and white perceptions of stores in
Buffalo (N.Y.), [581.

In the study of intra-urban distances, subrts (all located at one point) esti-
mated distances for the n(n-1) pairs of locations selected for the study. The esti-

2
mates obtained in this way were interpreted as dissimilarities data, and the Kruskal
LV MDS ,prograin was used to produce a configuration based on iriterpoint dis-

Amices..Figure .10 shows the configuration of points derived from the subjects'
estimates of location. Sjnce the scale. Of the analysis was quite small, considerable
accuracy of distance estimates was obtained by some sample members. Brealcing the
whole sample down,into two groupsbasecf on length of residence, and the distances
'into sublets "toward the CBD." and 4a4y:froni CBD" revealed some interesting
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F.gure 9. Positioning of Political Figures in Terms of the Two Key Dimensions
(After Johnson, 1969)

trends (Figure 1 I), For example, the newer of the two groups was typified by much
poorer estimation of distances, indicating that lack of familiarity with locations
'distorts their estimates of distance and can obviously influence behavior .with
respect to these locations. Members of the second group showed improved ability'
to-locate all features accurately. The variance between the two groups was seen as
an indication; of different familiarity levels with the City, with corresponding dif-

ferences in the rates of forming travel habits, and differences in the choices of
orientation nodes about which mental images of the urban area were built up.

The other significant feature derived from this analysis was the tendency to
extglerate distances toward the ,CBD. This in turn suggests that increasing conges-- '
tion/ d travel time) tend to increase the perceived distances between places, -and

he denser packing of land .uses around the CBD makes distances appear longer
and individual, places harder td-locate precisely.

Conclusions drawn from this study were that interpoint distances which are
over-estimated probably :reduce the likelihood of interaction between points. Shg-
gestions were made of' lo the likely effect of distorted distance perceptions on
things such as. Aces chosen to shon,.recreate, and establish residence. It seems
reasonable to assure also that further studies of` this type will throew conskddabIe
light on the relationships between perceptual accuracy and movement, and on the
effects that changing configuration (resulting from information changes) h. e on
urban spatial behalhor.

53..
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Figure 10. ACtual and Calculated Locations of Sample Points. The actual map is
compared to the configuration derived fromodilimilarity measures consisting,of
actin! distances-between points on the .real map. (After Gofledge. Briggs, 'and
Demko, 1969) 1,
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'Whipple and Niedell'S study of black and white peiceptions of various stores in
Buffalo (N.Y.) prpvides the geographer with an interesting framework for the
analysis of perceptual distances. The authors initially used a semantic differential
scale. to obtain a ranking of ten department stores (based on "favorableness") by
black and white respondents. Frequencies of visit to each store were also collected
and again stores were rank-ordered for the whole sample. Individettl semantic dif-
fereittial scores were transformed to a "distance" measure using the following for-
mula:

.

E
l.)

= ,e x1

a = 1
. x.

33 J

n

d

.

where Id..I = absolute distance between a pair ,of stores,
ii

'x
i3

= semantic score of word pair a for store (i),
, and x. = semantic score of-word pair a fortstore (j).0

The result was a distance matrix of perceived similarities for the n(n -1) pairs of
2

stores; this constituted the basic input' to the MDS algorithm. The results of this :

analysis were most revealing: -

'..` I,' - a) storeslithat cluster together in the final configuration are more "competi-
tive" than those that are far apart; (

b) black pnd white perceptions of the favorability of stores varied somewhat,
but aVerallythe perceptions were quite similar;

c) both samples did not necessarily shop at the places with the most favor-
10

able image; 3
1

. .
d) furtheL study ,based on social and economic class differences showed very

--,.

little v itation f the perceived favorability of stores:- ;,; . .

,,,While theistudy was ndertaken in an integrated neighboliood and would' there-
fore not exactly mirror v nations in perceptions resulting frOm locational segrega-

s- _ tion, the methods and r hi-indicate that perceptual distances between competi-
tqrsmay be a*tiseful variable in consumer behavior, studies. A modification of this
to find the perceptual distances of stores from consumers (using joint space pro-
cedures) wad probably be even more us ful,to the geographer.

A further example of The use of multidimenSional scaling, in the simple space
sense is provided by Schwind [49]. S,chwirrd's interest is in the migration distances *
between states in,,the United States, The basic input data are dyadic in nature, and
the algorithm used is the Guttman-Lingoes smallest space analysis program.
Schwind generates interregional dissimilarities data on the basis of migrant moves
and produces a configuration of the states of the United States in which proximity
relations are transfo ed somewhat on the bases of the migration inputs, Schwind
analyzed both dyadi streams of movement (i.e. the net migration rates between
every phir of state nil dyadic rates of movement. Here the ratio of net dyadic to
gross dyadic migration is defined as: TN= Mu mi; where: mu is the dyadic ratio,

. Mu + Mu °

. l
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and M. , M represent the directionally oriented flows between any two states i
and j.

In this case again, only the lower half of the migration matrix was read in as
data, and the solution was obtained under conditions of semi-strong monotomcity
and weak monotonicity. Results were produced for each dimension up to ten.
Results were interpreted both as dissimilarities and similarities data. Schwind noted,
that solutions based on similarities data had lower stress values than those based on
dissimilanties data. He also inferred that a three-dimensional solution was most
appropriate 4y examining the Shepard diagrain of the result). Interestingly,

,Schwihd found dyadic net migration' streams to be negatively associated with geo-
graphic distance. He 'argued on the basis of these results that it is justifiable to treat
dyadic net streams as similarity data and dyadic net rates as dissimilarity data. The
output from his study,inctaled: matrices of derived interstate migration distances
in a space of specified dimertsionality; the geometric coordinates of each state on
each recovered dimerjwthe distance of each point or state to the origin of the
r-dimension space; an raphic presentation of the position of states iriihe migra-
thin space (see Tieures 12 an&111 %

a

a,
Removed to conform with copyright laws.

o

Figure 12. Migration Spaces: SimilarAiei-Data (Source:iSchwind, 1971)

Schwi nd's paper is an interesting one, for it emphasizes one of the major prob-
lems involved l in multidimensional scaling analysisthe interpretation of dimen-

.

sions. Upon examining the geometric coordinates of states on the recovered dimen-
sions; Schwind argied that the coordinatesglid not seem to reflect any obvious
scalingbf states on the bases of incom-6:kutbanization, climate, and so on.'lle did
not, however; attempt to correlate the coordinate values with any scale 'values

- . ,

,56

09967

oVe



www.manaraa.com

"

.

. *

derived for the Ippropriafe explanatory variibles. He Aid, on the. other 'hand,
attempt to interpret the matrices of derived distancesof states from the origin of,
the migration space. Agar?' hii intuitive interpretation was that "disthnce to origin"

ss,
values seemed to suggest that states known fOr high rates of initigration.are close
to the center of a migiant's perception space, and that states known for high rates
of out-migiation are far toward the periphery.

Another application of multidimensional scaling analysis, this 'time using a
ruskal-type algorithm, is seen in Gould's analysis of space preference measures,

wit .re ,spect to the residential desirability' of various estates in the United States
[15, 16] . Whereas Schwind used- net migration rates between state to give him
some indicfition of the similarity.and dissimilarity of states, Goufd o tained pref-

.

erence orderings of the states from a sample of 25 resident graduate geo-gtaPhy
students at Pennsylvania State University. In addition to-obtaining t ese ordered
data, Gould colle4ed interval-scaled 'data, on the relative advantages o states. Ini-
tially, Gould considered the point configuraticin of 51 states in a two- imensional
Euclidean space. The arrangement of points in this'space was interprets as indicat-

, ing the similarity df states over the range of subjects. The stress value, i cidentally,
was .224 in 2 dimension's. Figu,res 14.and 15 indicate the point configurations with
both interval and ordinal scale measures., The scaling devices produce nteresting
clusters a states with perceived similarities.' The ordinal scale produced a more

.circular distribution of points andiconsequently one that was comparatively easier
to interpret. Gould suggested drat the configuration resulting from the interval

.("

e

. V

Removed to conf9rm.with copyright laws..
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scaled data might be interpreted as a map of America after it had been transformed
into "some highly distorted perceptual space." He argued that it was recognizable
as a map because states that occur close together in geographic space tend 6 be
similar when pdrceived in terms of residential desirability.

Gould then examined the problem of whether or not the interval scale configura-
tion is simply the ordinal scale Configuration which had been randomly disturbed.
In order to examine this hypothesis, he measured the locational shifts between the .,
interval and ordinal point configurations, collected' them at a common origin (simi-
lar to the collection of migratory movements for the purpose of estimating a mean
information field), and eilmined the angles of orientation. His c nclusion was that
the distribution of angles can be considered as having been dr
lar distribution: He then regressed an index of social welfar,
the perceptual score (scale value) of each state. His conclusions (R2= 0.69- indi-
cated that the overall mental map of the group reflects the variation of relevant
welfirg measures to a high degree. Further analysis of this regression proyided tome,,, ,,

interesting comments on the major residual values in terms of the underestimation
of the/Awes/of certain states-. Finally, by finding the configuration of.individnals
in the sample he was able to check to see whether or ncitinslividuals located close,
together in his configuration had similar output configurations, for their preferences
for states. Again he found a,high degree ofcorrespondence be eery the proximity
of individuals in the configuration space and the configuration states in the state
configuration space. , .

One ?if the significant ebnclusions from this study was that the ordinal produc-
tion of data provided a Mork easily interpretable and clearer configni tion than did
the more rigorous interval scale data.

.
4.-'Archaeological reconstructions.,For one final example of simple space utpul, we
can again return to the work of Tobler and Wineberg [561. Using the uttman-
Liqgoes smallest space analysis program Tobler produced a map of pre-Hittite cities
based on- information obtained from analyses of cuneiform tablets. Using some of ,.
the assumptions inherent in the well-known gravity model, TobleiThypothesized
that tht' more frequently a placerwas'recorded on these tablets the larger would\be.
its*e. Furthermore, the more frequently pairs of cities were mentioned together
on the'same tablet, the treater the link between them (either in a trade. or spatial\
sense). Based on these frequency counts, he compiled a:set of disimilarity measures

\ and; using them as input, reproduced a configuration of the towns themselves. \
I...Since the-locations of two of the towns were known, he was able to orient his- .\

output configurations in terms of latitude and longitude and to suggest an approxi-
mate location within a .radius of about 50 miles for the remaining, and. hitherto
unlocated, places mentioned on the tablets:"The essence of this.study was to,
reproduce an aichae.,:ogical or historico-geographic map of the location of pikes
based on infOrmation inputted, from.a geographic model on their proximities. Infor-
mation derived from the configuiatton may possibly then be used to choose among
a large variety of alternative locations for archaeological ekpeditioils. Incidentally, a

, .--

from a rectantu-
for each state against ,

0
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similar experiment attempting to reconstruct the locations of former places was
.

.condutted by Kendall, who used standardized inter-marriage rates for eight parishes
in 'the Otmoor,district of Oxfordshire, England between 1600 and 1850 as an index
of ,similanty Using the Kruskal MD-SCAL program he obtapied a very accurate
map of Otno.or-f251.

While the above examples by no means exhaust the range of uses for simple
space MDS in geoiraphy . they du give some idea of thety pes of problems that can
be examined and they refer Po a %ariety of te..hniques that can be used in compiling
input data.

Et. Joint Space Output

The use of joint space output appears,to have equally as much potential use in
geography as does simple space. The essence of joint space output is that both.
iinsitviduals and stimuli are mapped into the same dimensional space. In this way,
one can obtain the subject preference rankings and at the same time give metric
meaning ttf the distance separating individual stimuli. Concurrently, one can see
how close to an individual's "ideal" any particular stimulus comes.

L Inter - urban, migration choices. CYne interesting use of joint space output can be'
osee"fi inttie work pf Demko and Briggs [8r in their attempts to operationalize the
choice behaviot of migrants. They argued that inter-urban migration is the outc-ome
of a choice process iri'which perceptions of the favorability Of each 'alternative
destination is a significanfactor influencing final choice. Using a sample of individ-
uals in southeastern Ontario, they generated similarities,data concerned with the
perceptions of alternatire urban places and preferential choice data concerned with
preferences for these 'places as migrant destinations.

Each individual was assumed to perceive each cityas a union of attriute values.
By initially mapping the cities into a perceptual space (based on .similarlties
criteria), each place, was given locational and distance characteristics somewhat
different from those it possesses in physical (objective) space. In other words,
placei -which have similar. combinations of perctivediattributes would be-close
together in the .selectecl,r-dimension-arspace, even though they may be far apart in
objective space,

, I
The preference model for places is derived from 2ftmulticlimeniional unfolding

,procedure. Individuals rank order places on the tiasis of "utility': or some other
criterion of preference, then the unfolding algorithm- defines an ideal pointfor ea'efi
individual by unfolding his preferences ,irid plotting the location of this ideal pint
in the same r-dimensional space as the similarities data were PrOttel)(7, "pp.
140-180) . Each city then lies a certain distance from each individual, and a o'ne-

--,,,tlimensyq,a1 ordering )41,the relations between individuals and cities can be obtained
,(see Figure 16). Again additional in forinationcan be obtained from the output by
clustering the valiqus locations and inteireting which places. are likely to have
similirddrawing powers for given migrant grotipS. ak>`

.
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Figure 16, Preference. Space for Elmira Residents

from Demko and Briggs (1970) , has been removed. to

conform with. copyright laWs . It is ,a graph of cities

and individual ideal points.

.

2:Scaling spacg preference structures. Rushton has used scaling technique's in an
0 . ,

attempt to recover the nature of the., underlying trade-offs betWeen the various.

-..
7 stimuli that affect the locational choice of towns for consumer,expenditures by a..,-

sample of rural households [45]. His appfoachis described in some detail here both
because it is illustrative of the use of the method of paired comparison) in generat-
ing a proximity -Inatrixs,itable for ,scalineby non metric multidimensional scaling
techniques; and, because the four computational steps used in deriving the

- . .
proximity matrix have been incorporated into an integrated computer program4[26]. Befo !scribing the four computational stages, however, a brief rationale.
for th_e_resea er'sintel-est in deriving such a vale is presented... ', i

It interest ties in "predicting spatial choice from a set of alternatives, then we
might view observ.ed.flokes_as,the outcome-of a perceptuMprocess,whereby in

si-
dividuals compare p4iceived alternatives with in ordering function of all'conceiv-
able opportunities so as to judge the most Preferred alternative. RetUrriing -to
reality, it might thein be argued that a sensitive treatment of the placeschosen-as
compared with thoie places present but not chosen-might lead to the _recovering of
the exact degree olf substitution of increases in 144emerits of one variable pertain-
ing to the places for increases in a second variable releVant to the places. Only if
such statements can be made for all available alternatives, can we expect to predict

:choices from unique gimps of available alternatives. The analogy with indifference
Forves in economics, and preference structures in pSychology has been made else-

_ : where' [44] . In all cases, the intent of research is to specify the function that orders

,-s
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all conceivable alternatives open to the individual. Since this function pertains to
the relevant stimuli, the basic problen4 is one of scaling the stimuli.

\

Q Compunng, the input matrix. ;1, Definition of stimuli. Stimuli may be defined at
the outset with a sampling or other experimental design arranged so that subjects
are constrained to make ch3ices from all alternatives, or subjects might be asked to
make choices from objects that are then assigned to stimulus groups. In cases where
the researcher's prior knowledge of relevant stimuli is weak, the !Ater design is
more appropriate. Rushton defined stimuli as combinations of distlance-separation
between people and places, and functional complexity of places (estimated by town
population sizes) (Figure 17). When one town was ch2sen in preference to a second,
the generalization was made that the stimuli group which the firs place belonged
was revealed as being preferred to the stimu oup of the second. The stimuli
groups were called -Iciational-types/' In one, analy sis, 30 such types were defined.
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(2.1 The basic data matrix. From a random sample (603 respondents). of the rural
population of Iowa in 1960, information was obtained on the places chosen-for
expenditures on a number of commodities. Taking the place chosen for the major
ity of expenditures for groceries, the following matrix was assembled.

TABLE 13. BASIC DATA MATRIX (HYPOTHETICAL)
Locational Type

Household ID 1 2 3 4 5 6 7 ... 30
1 0 * .. ,s. 0 * 1 0
2 0 0 ', I 0 , o * ... - , .

I * * * 0 0 . P * ,
4 0 * '1 * 0 0 '*,

1

.n * * * 0 0 '-, I

Legend: Town in the indicated locational type:. . : I patronized i

* present; but not patronized
0 not present

b, Computing the 'interpoint probabilities. A measure of the extent of preference
for one locational type over another is the probability that one type is chosen over
another when both are present and one is chosen. Thjsprobabilify.4.:an be computed
as a relative frequ'ency by maniptilation of the basic data Matrix described above
[45]

c. Computing the interpoint proximities. From this measure of the degree of prefer.:
ence, a Intasure of perceptual.distance between locational types is required tha t

least in an ordinal sense, will indicate closer or further perceptual distan5ebe een A
all pairs of types. For this iurpose, we use,the premisepf Cattell that equally often
noticed differences beiween stimuli are eqyalun niesk alw4s or never noticed. Con.
sequently, , if one locational type is as he uently preferred to a second type as that
type is to the first (on the occasions w en both are present and one of them isS'
chosen) the overall peiceptual distance etween. the two types is zero. The per

dt tancebetween any two types is given by:

That is, the perceptual distancefroml cational type to type j is the absolute value
of the difference from 0.5 of the co ditional probability that locational type j is'
preferred to type i when both are p sent and one is chosen. If follows that d:_
d A matrix of such perceptual dist rices is an appropriate input matrix for scaling
particUlarly by nonmetric, scaling teghniqUes, for the quality of the information is
such that we are confident only of the tank ordering of the interpoint distances.
However, Shepard 1511 has shown that the rank ordering of all interpoint distances

6.3
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IS
in a matn.x.implies the metric position of the puiyits in a ;pace of unknown dirnen-

_ .

sionality and that, where thenlimber of points .is large (e.g.. greater than 15) and
the true dimensinality of the space il, small, the freedom of movement in this
space is most restricted rf the rank order of interpoint distances between points in
the metric space is to correspond with the rank order in an input matrix. Hence, he
argues, that metric structures are often. implicit in ofdinal data. -

0
.

. . ..
d Scaling the locational types. The locational types were scaled by the method of
Kruskal [28). and an isopleth map of the scale values for the one-dimensionala
solution is included Is Figure 18. , , . ,

x . . .
'e. Significance of the recuyered scale. The significance of the recovered scale is that.
while "measured" frOm observed behavior in a spatial system of oppottunities, it
might ex spatial choice in ,a region where the density and arjangement of
spatial opportadities are different. Preference scales are fundamental .descriptions of
,behavior in that they show how all by Pathetical alternatives are evaluated..Since a
particular environment is a unique subset of the set of by pothetical alternktives, the
preference scale may be used to ev,aluaTe this special case. It is this generality which
an appropriately designed preference scale,possesses that leads to its great potential
in solvingresearch problems. . . i\ ) ._

. ,' ,\ .
f hzte;-personal comPansons.of scales. Eving 1121 has compared the preference
scales of lacationaetypes for different social and economic groups of the lov7'a
households. He has applied significahce tests to the differences in probability values
in the cells of an input matrix and he has,also used differences in scale values for a
subset of alternatives to compute the probabilities orinteracticin with any alterna-
tive_ lie found that the greatest difference in pafereneeStructures was between two- ,

grpups ,of,, house holds, one of which_ had, been shOwn to patronize the nearest
-available opportunity while the other was composed of h6useholds who by-passed

....

the nearest opportunity in favor of wme other. This resul y be contrasted with
that of Ermuth [1 11 who found no difference bet% the 'pre ference scale of one
group of urban hbuseholds who clafmedfirt a test question using the s.i.tnantic'
clif(eFential) that the distance of a more.was uppuitant in their choice, and the scale
of a second group who claimed that distance tv4'not important:. '

g. Temporal comparisons of scales. Several factors lead to temporal changes in such
scales. Changes in how, people evaluate alternatives are often induced by changes in
the character of the alte'rnatnes themselves and in the transportation system that.-
relates, them to the alternatives, these may lead to changed preference scales. One,
study h compared the Iowa preference scale for grocery .purchases.purchases in 1960 with
that of 935 1461. Major differences found in thp two scales can be sutnmanized as
an inco sizg tendency in 1960 fgr Iowa households to by-pass small'towns at Close,
distances for larger towns farther away. Such a generalization has previously,beenSuch .....

..
,
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made on the basis of less formal and less quantitative research, but the precise
aibration of the change is not possible unless the scales are computed. The growth
or decline of specific towns in this period, will depend to a.large degree on their
position in relation to the two scalp.

z

3. Eire?erence and choice in different environments. Compansons have been made
between preference sates measured in two different environments, southwestern
Michigan and Iowa [471. The co rapansons showed. that. despite different distance-
ickay functions for the probability of choices made at different distances, the

------riCovered preference scales are si r in the two areal
-4

a. Joint-space analysis of preference scales. A second approach to the question of
choice in different environments is to ask whether spatial choices for like things in
different areas ..an be regarded as different points of view from which the two
groups evaluate the stimuli (lok,ational types). Beginning with a matrix consisting of
the scale rankings of the lucational types for three ,..ommodities in Iowa and for the
same three in Michiganthe ..six sets o rankings were%.evaluated to determine where
each was positioned in the joint s aca with the 30 stimuli (Table 14). The
locational types are defined in Figure \l 8. The two - dimensional joint-space Solution
is sho4 In Figure 19. and the scatter plot of configuration distances and input
ranks is-'shown in Fieute 20. The stress value which measures the goodness-of-fit is
0.052. The analysts used the TORSCA algorithm [61, p. 13]. The close proximity
in this preference space of fiVe of the six points representing the groups shows that
systematic differences in viewpoints of those five groups do not exist, rather that
the ordering of spatial- alternatives is similar in all five_ cases. The sixth point,
describing the viewpoint of the Michigan. group choosing towns, for clothing
purchases, is anomalous and deserves further study . Such differences in preference
structures can be atributed.to one or both of two sources. They may indidate that
one group evaluates similar stimuli different4 , for example, the results above might '
mean that Iowa households. have 'a, greater propensity to.patronize small, local
towns whereas.their..Michigan counterparts might have changed'their former habits
and n'owprefer to.rinake the longer Journey to the bigger towns. Alternatively, the
different' Preference structures might reflect the fact that similar zsized towns in
Mii.higan'andIoWa might contain different amounts and types of clothing stores,
they the oblerved pattern of Figure 19 would be a reflection of the ambiguity.
present in the surrogate variable "fown-size" as a measure of town content. Further
research would clanfy these interpretations. However, the anomalous group aside,
the tight cluster of the other five groups in the perceptual space and the accuracy
with- whii.h the independently cgmputed preference structures could be recovered

from ,this Ault ,space is an mcht.ation of the, consistency of spatiallireCerence
strictures Tor different trip purposes, as well as for choi 'ce of towns indifferent

..f

areas.
. . ,!
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it

to Town (miles)

Figure 18.4ce Preference Structure for Grocery Purchases. Iowa 1960 (After
Rushton, 1969 1451)

L.

An ingenious recent application of joint-space analysis was designed to shed light
on the problem of interpreting scaled dimensionst referred to in Section I. In a
study of individual rankings of U.S. states for residential desirability, Lieber [311
added to the m x n matrix of m states and n state viewpoints, ix -m objective
measures of the states on variables hypothesized to be .related to resi final desir-
ability preferences. He then simultaneously scaled the m n I,points n the same
space and interpreted interpoint distances between the state viewpoints and the
objective criteria as 'a measure of the degree to which the state viewpoint corre-
s onded with the various objective criteria. Table's .t5 and 16 show the results for
t e I7 most preferred states.

Incorporation of preference scales in diffusion models. De Temple [191 has
:
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Figure 19. Joint Space for Consumer Spatial, Choices in Michigan and Iowa.
Legend. 30 unidentified points refer to the 30 locational types:Points numbered
1Michigan, clothing; 2Iowa, clothing: 3,Michigan, appliance; 4Iowa, appli-
ances; 5Michigan, groceries; 6Iowa, groceries

argtiqd that a space-preference structure is a more appropriate predictor of spatial
interaction rates than the,mOre commonly used distance-decay finktions, since, as `
we stated above, the preference structure is more sensitive to the unique distribu-
tion of people or places in a given.context; De temple, used preference structures

for towns selected for different commodity expenditures-generalized for the
probabilistic%allocation, rule of Luce [36J in order to generate prObabilities of
interaction with places ;to govern the spread of the adoption of a fainting innova-

.
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tion. Formerly, distance - interaction ratesthad been used for this purpose. His opera-.
tiona,liption ofjhe diffusion model is thus closer to the theoretical model first
proposed by Hagerstrand [19] . Others experimenting with preference structures
include Ewing :[12] and Girt 4131, who have extended the application of spaCe-
preference structures by applying Luce's choice axiom, and Briggs [5] in his study
of preferences for shopping centers in Columbus, Ohio.

"-i-
,

TABLE 14.-RANK-tonER OF THE THIRTY LOCAT1ONAL TYPES
° FOR THE SIX PREFERENCE STRUCTURES

r

Locational

Types Mich. e Iowa
Clothing

Mich.., Iowa
Appliances

Mich. ..Iowa
Groceries

1 16,000 , 21;000 13,000 16,000 12,000 15,000
2 15,000 ; 24,000 19,000 21,000 16,000 2.2,000
3 28,000 27,000 21,000' 24,000 ' 20,000 25,000

.. 4 27,000 28,000 30,000 27,000 '29,000 28,000
.

1\
5 25,000 29,000 29,000 30,000 4: ''28,000 30,000
6 19,000 17,600 7,000 11,000 8,000 10,000

. 7 23,000 ' '18,000 15,000 18,000 14,000 17,000
8 29;000 25;,000 17,000 19,000 23,000 9,000
9 26,000 22,000 28;0007 23,000 22,6100 .24,000

10 , 20130 30,000 27,060 .29;000 27,000 29;000
11 8,000 ''4,000 5,000 4,000 5,000
12

410,000
6,000 '1'6,000, 11,000 9,000 11,000 13,000

13 18,000 . ,19,000 16,000, 25,000 17,000 19,000
14 22,000 23,000 23,000 17,000 , 25,000 26,00,
15 20,000 26,000 26,000 ,28,000. 30,000 .27,000
16 11,000 . 4,000 ' 6,000 8,000 3,000 1,000
17 ',, ,,,7,000 "11,000 12,000 12,000 '7,000 11,000
18 17,Q00 .14,000 22,000 - 15,000 15,000 14,00
19 2 30,000 15,000' 25,000 26,000 24,000 '21,000
10*.s-.. 21,000 20,000 24,000 22,000 26,000' 23,000
21 -9,000 .3,000 9,000 4,000 5,00 ° 4,000
22 , ..3,000.....*< 6,000 1;000 - 6,000 .,1,000 1 6,000
23 13,000, : ;.9,000 .14,000 3,000 13,000 12,000

. 24. 14,000' 12,000 18,000, "' 11,000 . 19,000" f 6;000
25 12,000 13,000 20,000' 20,000 21,000 2D,000
26 2,000 , 1,000 , 7,000 18,000 3,000
27' 1,000 2,000

,f3,000
2,000 2,000 ) 02,000 , . -2,000

28 4,000 5,000 5,000 1,000 '6,000 7,000
29 8,000 7;000 : 10,000. 10,000 10,060 ' 8,000
30 5,000 10,000 8000 '14,000 9,000 18,000

69
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TABLE 15. INTERp\OINT.DISTANCE MATRIX OF GENERAL VIEWPOINT

AND OBJECTIE CRITERION OF1NE SEVENTEEN pREFER`IttD STATES
01I HE PARTITIONED RANKINGS -://

State View ;

Utah

Alphabetic
Contiguity Offen

0.285 1:372

/VVarm
Climate

1.3

Coastal/ 0/// -7-Regional
Recreational' Distance Preference

*b:
1.578 1.379

Texas 1.256 0.041 0.203 Un- 0:808 0.609
Verrhont 1.250 0.612 .173 0.010 0:838 0.040
South Dakota r.204 . 0.118 0.280 0.116 0.733' 0.067
Tennessee 1.237 0.112 0.056 0.113 0.960 0.161"
Indiana . 1.356 0.272 0.434 0.271 0.583 0.222
`California f 1.230 p.013 .157 0.016 0.852 0.057
Maryland 1.444 0:481 .643 " 0.479 0.375 0.43J
Florida 1.242 '0.020 181' 0.619 n Q829 0.0 q2

TABLE 16. FREQUENCY OF CRITERION IMPOP, ANCE ON THE
STATE VIEWPOINTS OF PREFERV P TATES

.

: g . . Most :second Most
Critgriort . I mportantfactor Important Factor

Alphabetic;Cohtiguity 1 0
Urban Offerings .., 1:5 3.5
Coastal/Recreational 1.5 3
Warm' Climate 1 0
Distance . 1 0
Regional Preference . f 3
,None . - 1

Total 9 9
9

4. Ihcorporation of preference scales in central-place theory. Since central-place,.
theory describes the theoretical location of business clusters (settlements) resulting
from th 'mutually adaptive behavior patterns of entrepreaetirs and consumers,
scales that describe how one of these groups responds.to actions of the othergo
ought to be the fundamental postulates of the theory. But the scales that were used
in The classical statements, were so simple that they were not commonly recognized
as scales. Thus, from.the consumer's point of view, the postulate of Christaller that
the consumer. would patronize the closest place offivring the required goods was
essentially a scaling of televantl'alternatives on th 'stance variable and postulating
that the alternative with minimum distance sc value would be most preferred and
hence patronized. Described in this way, i mild seem to be a natural development
for the theoretician to question the Itect on the derived settlement patterns of
substituting more realistic, consu .r preference scales faille one used by Christal-

d im licitly accepted b ost researchers who have "tested" the theory since
his work firs red. The question has.been discussed [6] and a formal model of

70
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cential-p ace theory has been constructed in which the consumer preference scale'
has bee varied [481. The results were that, accenting all the other postulates,
constraints, and enviro mental assumptions of Christaller, theouping of unique
'bundles, of goods in-a ntral-place hierarchy was no lone a .clerived property, of
the theoretical system, ch findings support the thesis at preference scales are an
important input to location theories for mutually.a five behavior patterns which
area hallinark of all location theories.

Further eviAence of the usefulnqi of suchapreferences in substant ve research is
found in other work unpublished at The University of Iowa. Mr:T Bell has d
trend surface equations of the scale values in a computer progra that estimat
tributary populations for market centers. From a close checkerboard sample o
rural locations, the algorithm evaluates surrounding towns and allocates the area ,
surrounding the sampoint to the most preferred market center, using the equa-
tion, for the preference 'function for the activity in question. Bell is currently
comparing the relative sides of tributary populations surrounding 'centers which.
'have loit certain activ,ities in the past, decade with centers that have supported the
activity or have added it t6 their business structure during that period.

.
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IV::, CONCLUDING STATEMENTS 4`v

,--.-',. -....-,
The overall strategy adopted in this Thotibgraph liaslieen to present MOS as a

useful: tool for, geographers. To\lo this, we felt that it was necessary to explain the....
component parts of the methoda, to mention the types of metric and non-metric
prciblems to which if had beetfapplied, to discuss the nature of d;ta required for
inputond to examine the mathematical 1111ctvre of the technique. It behooves us
now to comment on some of the problems.,1&olved in iising.the technique, and to
elaborSte on the areas of potential use of IiiipSanalYsis in.thediscipline.

e Problans of Using MISS ..-
....

,

,

he probletn cf identifying dimensionshas previously been mentioned' Perhaps
most serious problemrelates to the "stopping" subroutines which determine

ality and it RI- the output, This is the global minimum problem.
stress values at each iteration help to determine the goodness-of-fit

rived configuration and an actual data set. "Satisfactory" stress values
can sorneti les, berobtatned. whefi "local minima" are reached; continued iteration

.c .-- ,

.mgy at ,first produce ail increase in stress and then a,decriase whichtresults in values ,.
..., 4 ,

considerably 10:ter than those obtained at the localL

miniinum. Resulting conflgura-a ,
(- tions and InteEpoint distaqes may also change considerAly in this process. Most

I,, "ADS algorithms check for 19cal minima by Sangirig step sizes and continuing the,

.-,. iteratiol a given number of dines. Poi the most part t4se procedures satisfy a
} % ,

1

research r. An alternative method of handling this problem is to rerun the iterative'
4 ' sequence beginning with different starting, Configurations and checking to Fe if

....

approximately the sainesonfiguratiA islibtained on eachjim. However, there is no
sure way of determining ifa.gloeil minimum has been reached, consequeoly, the.., /
teehniqueThotld_not at this stage be used to define ssch minima - rr

'-- --- \ ,
-., 3k /

13'.,Potiakilses of MDS.in GeograNy
.:-,..44- . . . .---,1`. . ,, , .

. - (A e 0 , potential uses of MDS which is as yet largely .unexpelored , n gv3g*.7::-,..... .
''' '' ra0v`tirs--thato taping' scale values for input into othef analytical algoritlint,q- . --\ - . , .

.-_,, ;, -Perhaps ,14 most .obidus of these uses is the application of clustef `techniques on t,.,
1 DSoiitplit,configur . C9nfigurations van banalyzecrin_this maliner.either in \ -.,k' \.. 4 , .1

't simple or joirit spaces n the latter case, either individual or stimulus configuotions \
..1 \ '-b-a. . n mined. t ...1 .

-441
. . - \ . , i

ile' geographers ne frequently interested in the pati?rn. of ,outkut configurai.,
.tionsQ other 'Ofplines_Aremore intereVed in the ,scale_ values.
distances der&ed. from MDS 'analyses: For example, it may be posirble tl; use

..`".; finterpoihr ctisiances as input into deision models hi an attempt to predict choices.
'' In joint space Analyses, dista.nes between imitLiduals and stimulus Points P`eficime.

the -daioi, inputs into such modefs.-Aith-ough no studies exist as yet which combine
T

e '''
characteristics, of clusters (suchlias mean areal centers) and joint space distances, it.,

-,,, f A, ...r. i . ,"" - . Al '.'"'
Ic.-.> * ,... ,;.,,, C. LT ,

...

G'" ° i'-..gc ^
.,) 72' e

..,-- °-. ..... .-x, ,..!
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seems that they are eminently feasible for determining likelihoods of interaction
between groups of indiyiduals and specific stimulus points. .

.'' Our summaries of the worts of Toblet, Kendall, and Wilkinson ustrate one of '.e.
the more creative uses of MDS analysisthat of filling in "missing data" or speculat-
int about the locations of phenomena. Archaeologists and historical geographers
appear therefore to have at their disposal an interesting and innovative method of
analysis fop their disciplines. / Z' Whether joint space or simple space procedures are used, MDS appears to have a
multitudeof pbtential usir in geography. In addition to uses such as those above,
we suggest thdfollowing areas of potential research: ., , .

1)lo stratify populations according to specific social, economic, ethnic, or
other characteristics in order to define."precisely how variations in these

.. phenomena influence perceptions of locations and attributes of things, and
to determine the sontriNdon of such stratifications to Variations in pref-

(
erence rankingspfphenonielta by subjects.

2) to determine how distance,,or locational characteristics of configurat4s_
4 . %

change with time; this pardy.indidtes the role of learning and information
gathering in obtaining peiceptual accuracy. Tlie results ca,then bdused to
hell) ,explain a variety of sPaAial behrtviors including jour6ey-to-work, con-

,
sunier behavior, and resential site selection:-- ° .

.

.,. 3) to .assist m translating non-metric data to metrie distance measures for
,* purposes such as distinguishing clusters Of like and unlike phenomena.

44) as-a potential aid in policy making by determining the "perCeptual gaps!'4
that exist in groups of phenomena: for example, finding the locational and
perceptual properijds of stores that should be developedto serve minority
and other populations. .., .

5) to,experiment with the notion f perceptual distance, to translate it into
metric terms, and perhaps r vise our' widespread use of- just: tWo-
diniensional Eticlidean distances in explanatory models, of spatial b,ehaviOr.-...

6) to examine the functional relationships between perceived and "actual"
elk' distances in-order to determine the range over which these,distan s agree,

d/A/the natu*of the relationship (i.e., whether linear or non-lineal.), e rate
at which divergence occurs as distance increases, and otherActs concern-
ing the twb types of distance..

-77) td examine tlitnature of terms such as "proxlinlitY'.' and "closeness". in
order tsyestablish meaningful uses of the terms ,Irt spatial analysis.

The rsea ch questions proposed :above lyve existed in a, confused sense in
eo a by for many years, the ma$14inniatie eveloPments reviewed in this niono-

;graph w n glen clarification and rmatzation, providing concepts, terms,
theoierps, anti empirical findings that tunnlate the researChees imagination. Since .

,each qfiestion be. ,elated to rese,a ,11 that his beep undertaken by.eographers
astiew.4Y .rs,, it would be prudent to note that in eactcase the queitio

raise niarWinately 'solved by other forms Of data antlysis..However, ex
4nce to d;t6 his indicated t fulness of 'MDS approaches in the

. .
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`these questions The fact tit* they have been raised so recently, however, illustrates
ho'w ddelopments in bash..analy tical procedures stimulate researchers to ask new
qugstions.

The development of non-metric MDS has therefore provided the geographer with-
concepts and techniques by which he can expect to solye some of the puzzling
measurement problems that have impeded the developinent 4-behavioral ges9g-
raphy. For example, geography has only just begun to research and to iii the

',form of preference structures. We can surely expect that man's adjustment to and
behavior in his, physical and human environment will more commonly be inter-
preted and researched as his reactionto a perceived set of stimuli. His evaluation of
these stimuli will become. a primary research problem. Decisions made in this
environment will intre:tsiAgly be viewed-as a process by which basic preferegces are
linked to perceived sets of stimuli.

In addition to their role in understanding choice behavior, preference structures
will increasingly be usen the'normative sense of designing or controlling operat-
ing" spatial systems in order to optimize subjectize preference functions. Thus the
central importance of basic preference studies is emphasized and the accompanying
rofe of MDS assured.

In Section I, we mentionedtthe .existence of seve'ral MDS algorithms. Each of
these has been programmed and information regarding their availability can be
,obtained from either the Geography Computer E change rogram t Michigan
State University or from the authors. themselves. A recent evelopmeI t not dis-
cussed n our text is, the MINISSA s nes of scaling p grans developed by Lingoes
anti Ro 19mlwe have not yet examined this algorithm in detail but its structure

'mfid'advantages.pre discussed by the authors [33]. ..
hi conclusion, we reiterate owr po§ition that although MDS is still in.a develop--

mental stagtf.i.it provides a useful and constructive_ methodology forexamining the-
probleins of preference and zhoice- which are of increasing concern to researchers in

i
;;

. ,
geo0 weaphy,.and express the hope that our treatmet of the problem will increase
knowledge and availability of the method in the disCipline.

e.
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