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Technical Papers are developed, printed, ‘and distributed by the Commission on
College Geography under the/ auspices of the Association of American Geographers
with National Science Foundation support. The ideas presented in these papers do
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An wmvitation from the Commussion on, Quanm.mve Methods, International
Geographical Union, 1n November 1969, “to prépare for *Multivaniate Scaling’ a
detated discussion of the techmque and the reason Sor s use, endmg with a
step-by-step worked example using real data,” for presenldllon at a meeting of the
I G.U. Quantitative Methuds Comnussion in Poznan in September 1970, appeared
1o us to be an ncentive to weave together the patchy knowledge of scaling algp-

N nthms that we had found scattered throughout many periodicals and manyscripts,

. For geographers who look askance at the necessity of becoming acquainted
with yet another statistical tool, we can only express our conviction that the
importance of the scaling prublem has been tou little recognized in geography and
that. insofar as a major area of geographic interest 1s with choice data, s;almg
techniques provide the tools for analyzing such data. As carlier styles in géographic

. resBarch emphasizing structural descriptions give way to research styles that search

for process laws first and then explore their spatial implications, su techniques that
are suited tu the analysis of choice and the preference functions underlying choice,
must be adupted. In comparison with the parametrie statistical techniques more
commonly wed by geographers, non-metric scaling techniques alow. the researcher
to Be more flexible in searching for functional forms and 1n designing schemes for
assemblmg basic data. To take advantage of this flexibility is both a problem and a
vhallenge. Our hope 1s that this monograph will indicate to the sheptic that suf-
ficient achicvements 1n scaling appheations have already been made to justify the
»  serious study of the still developing area of scaling methodologies.
] As with any basu. analy tical technique, appluauons range through every sub-
‘field of geugmphy Cunsequently we felt tQm a review o} these applicatipns might
, be useful in indwcating to researchess immersed i their speuahz 4 area, the com-
) mun prublems of a methodological and technical character that hey share with a
¥ far wider community of scholars. In preparifig the review, however, we felt that an
. Jdequgte statement on the mathematics and heuristics of scaling algomhms ‘was
¢ first necessary. [deally . we would have preferred to make a x.n.mon to a review that
already existed. Search as we did, we were not able to Io;ate a seview which served
oui pufposes, though we saw some references to reviews “in preparation.” The
_excellent treatments of Torgerson [57] and Coombs {7] largely predated the major
. developments of Shepard [50, 51] and” of Kruskal [28, 29, 30]. These, in turn,
spawned further theoretical and empirical works that we soon found were not
’ «~ described adequately in print even thouugh their understanding was critical for those
" researchers who depended on scaling in their substantive work. We found that
nformation on this subject was peing transmitted through’ numerous working
papers, discussion papers, unpublished dissertations, newslctters sand computer
. program printouts. In our own rescarch we found it necessary to *dissect” sub-
“routines 1n scaling programs in order to understand how certain critical parameters
were being defined and used. Thus the work is ;Stsemed in three parts relating to
baste fundamentals of scaling, data,requirements, and algonthm constructions and

problems, two step-by-step worked examples of .the non-metric section of a multi-
Q ‘ " ) ¢ "
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dimensional scaling algonthin, and a review of geographlc;l applications of the
approach in a vanety of problem areas. '

The willingness of some of the most' prominent researchers in muhldlmen -
sional scaling tu send us unpublished mapuscripts, repnints, computer pnntouts, and
test data, and, in the case of Professor Lingoes, to provide us with a mnost helpful
cntique of the L.G.U. paper, was a s_burce of inspiration to us to complete the werk.
{n addition, several of our students helped us by working on some of the program:
ming problems and‘by running expenmenta] data through the vanous algonthms.”
Although we had mlended 0 expenment further with different algonthms and to ¢
report resuris in this pager, we found that ngoes and Roskam [33] and Young
and App]ebaum [62] had admurably designed 'expeniments and reported on this
question.

We thank Professor James Lingoes of the University of Michigan and. Pro-
fessor Forrest.Young of the University of North Carolina for the materials they sent
us and for thewr most interesting communications. We thank also Professor Waldo
Tobler of the Uriversity of Michigan for his.interest in the work, for generously
allowing us to use his tnlateration example in Section I, and for sHowing us the
vanety of map transfdrmations applicatigns of scaling. At the University of lowa,
Mr. John F. Hultquist and Mr. Stanley R. Lieber have helped us by testing and

. using the TORSCA scaling algomhm, at McGill University, Dr. Gordon Ewing
helped us by describing and commenting on his use of the Gyttman-Lingoes SSA -1
algonthm, at Ohio State University Dr. Ronald Briggs\and Dr. Donald Demko (now
at the University of Texas and Queen’s University, respeetively) expenmented with
unfolding techniques and with the Kruskal MDSCAL series of programs; Professor
L. Néidell formerly of the Department of Marketing, SUNY at Buffalo, drew our
attention to several interesting spatial applications of scaling methods outside the
field of geography and provided tapes‘of the entire Guttman-Lingoes series, Pro-
fessor Paul Isaacs of the Psychology” Department, Th¢ .Ohio State University, gave
gmcal technical :}Mce on the interpretation of vanqus algorithms. We also
acknowledge that the Computer Instituté for Social Science Research, Mlc}ugan
State Umiversity, provided the imtial simulus and the programming assistance that
led to our applying muludlmehsxonal scaling techniques in our own work. Finally,
we acknowledge our ‘gratitude to Dr. T. Czyz, Dy -Z. Chojnicki, and,other Polish
geegraphers who created such a convivial atmos¢here for discussion at the L.G.U.
meeting in Poznan; September 1970.

A”Lknowledgements are also due to the g’ol}/owmg people and qrgamzauons for
permissibn to, use diagrams and maps. Professor W. Tobler, University of Michigarl,
Northwestern University Press and Department of Geography; Associatign of

- American Geographers, Canadian Assocjation of Geographers Dr. Paul Schwind,
University of Hawaii, Geographical Analysrs and Professor Peter Gould, Pennsyl-
vana State University. .
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I. AN INTRODUCTION TO SGAL!NG AND SCALING‘ﬂL
ALGORITHMS . ' .

AN

WAL Sca]mg

The fundamental idea of scaling is to produce a range, of scores that hgve mean-
ing either with respect to each other’s values or to some arbltrary or abso]ute value;
<get or accepted by the scale. A scale generally consists of a system of numbers
related by ‘orrespﬁeme rules which enable meanmg to be attached to the objects
possessing them. For example, a number system 1s a scale which can be nominal,
ordinal, interval, or ratio 1n nature [27, pp. 9-12]. The explication of ggg number
system 1nvolves itemzing the correspandence rules which give meanMg to each
number in the system [41]. Thus, we can envisage that potentially there is an
- infinity of ways to scale data, generally, however, the scaling problem reduces_to
one uf devising rules for the measurement of a construct or phenomenon such that
the resulting measurements provide an easily interpretable and admissible trans-
formation into numerical forngof the phenbmmon being scdled.
" The advantages of scaling are_ similar to those which denve from she measure-
~ .ment of progerties in general: . . . :
‘ 1. scaling makes it possible to differentiate among instances that may be lumped
together n a given class of things (e.g.. degrees of * ‘warmth™);,
2w scaling can show, relative position rather than-just dnfference and
3 scaling allows syste atic mampu]atlon of the scaled iteyns in conformance

with concepts and theories of logic and mathematics. - R

Scaling methods are gepetally subdivided into two classes- unidimensional and
multidimensional. Unidimensional scales are those which measure variation with

. respect to one attribute (e.g., color hue, population size, neighborliness, per capita |

+ income,, fesidential status, social rank, degree of urbanization, and so on). For
example, Berry'mGlhsberg, [4] constructed a series of unLdlmenﬁlonal scales

measuaing a vanety of urban, economic, and societal charactcrlshﬁ of various

isaOf levels of
le indices of
scales based

countries of the werld and used those scales in a multivariate ana]y
", economic development. Similarly, ghe urban rank size-rule an
pnmacy developed by Linsky [35] and Mehta [40] are unidimensic®

on population-size which provide a range of scale values. Howe 1:, despite the )

~* widespread use of such scales in geography, we must be aware of the prob]em that
' - systematic variation of the scaled phenomena with respect tg, nﬁ)re than the
“assumed number of attributes may be undetected and may lead to dlfﬁcu]tles in
interpreting the results, or to a rejection of experimental results. I%Xamp]es mlght
inchude dlvergemes between actual migrant moves and scales expressing the “desir-

ability™ of p]acés of sett]ement or var\‘tlons in the attracting power of places
] resulting from vanatluns in'the number of functions rather than Just population size
s . [3] - e . . . . e 4

. Multidimensional SLa]mg aims at developing procedurgs which will Yissign-sets of
numbers*to various quantities of attributes such that the numbers directly reflect
. variations in the qu.’agtmes of the attributes among the phenomena being scaled.

e < ’ ; 1 ‘ - - -
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" For example. distinctions may be called for between objects which vary with re-
spect to color, location, shape, size, and so on. Such objecty form a multidimen-
sional series,"and the scaling procedure attempts to idertify a number of relevant
“dimensions of these objects. To do this, data are collected to permut the detection .
of systematic varation with respect to more than an, assumed small number of
attributes. For example, if scafing fs used as an evaluative device, a subject is
generall) ingtructed to consider the snmllant) ar dlssmuldnt) of stimulus objects
(t.on51dermg dll relevant attributes) rather than being asked to rate objects accord-
eing to the magnitude of some specific attribute. Specific examples of these pro-
cedures are dlscussed later in thigpaper.  *
Recogmtlon that ‘mny object may have a number of attnbur”s and that dlfferent
+  attributes may be used by cﬁffcrent ndividuals in their attempts to scalethe objects

in some way,‘led to the concldsmn that afy given object could be regarded as ~_

. existing in an n- dlmensmnfil space, where n represents the number of. pe p_,r,celved or '
actual attribut®. The quantity of each atiritygfe belonging to an object can then be
interpreted as a geometrlcaa coordinate which, when used in conjunctlon with other
quantities (coordinates), ,determines the location of each object in the. n-
dimensionai space. The siknificancé of this is tha if individual objects ‘can be thus
locgted, then mterpomt distances can be caljulated and objectlve statements can be
desived concerning the distances separating vgrious objects.

There are sofme important points to conéider about. this geometrical mterpreta~
tion of the multldlmenswnal scaling process. First, consider the case where ‘objects
are located in an n-dirensional real Euclidean space. Here each number associated

with an 3ttributc gives the projection of the object on one of the coordinate axes of -

the space, in other words, it allows us to determine the distance of the object from
an ongm along a given axis. The distance between two points located i in thlS Space j )s
given as fallows: . -4 -

" R . ) ,_
) S\

. e v b\fhere(j and k are the two points, A
; . . R » ¢risan index of the axes, R
- fn is the number of orthogonal axes, .
e . and " pgs Py are the projections of the points-on axis f.

What is particulatly 1mportant is that given tht'Wstances between all pairs of points’
in the space, the: projet.thns of the p#thts on any arbitrary set of orthogonal axés in”
the space‘tcan be determined. In other words, given interpoint distances, we can

. recover the number of dlmensmns in which the points exist. For any set of . inter-
pomt distances there wﬂl be a space of minimum dlmensmnahty in which a'satis- ‘
factorily large number of ‘the interpoint distances maintain their relationships one
ato “another. One of the aims of multldlmens:onal,scalmg is to identify this space of

. minimum dlmenswnahty and to ‘interpret each dimension in terms of stimulus .

~

attributes. , - N
. *

The second critical feature of multidimensional scaling is that it is not necessary

'
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< .B. Data Requirements and Collection’

to have metic information on the interpoint distances as input. Becausg subjects
are not asked to make decisions with respect to a given number of attributes, they
are free to choose any number of attributes they desire in order to make distinc-
tions between objects. Thus, instead of imagining that each stimulus object has a
¢ Idcation in a real Euclidean space, the subject locgtes each object in a psycho-
logical space” whi¢h may exist in a quite different form of geometrical space ln
addition, subjects locate points in the space merely in terms of their being “nearer,”

3 6 s ¢

“greater than,” “more similar,” “more preferred,” (and so on) to any given object
than they are to other§ The aim of multidimeR&ional scaling is to take the data
collected with respect to stimulps objects and to recover from these dafa a spatial
configuration of points in an identifiable space of minimum drmensrona]rty

S, Ty -
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» It was suggested abave that multrdrmenj;ronal scaling procedures are versatile in

that they can fake as input either metric or non-metric dafa..Since discussions of

‘ the various types of netnc data can be found in any.basic mathematics or statistics
book, emphasrs will be plaCed here- gn usrng ‘non-metric information.

Cudmbs. U[7] argues that there are *four_basic kinds of behavioral - data—.,

preferenfial choice, single-stimulus, stlrnulus-companson and sintilarities data.

Assume that we have a sample of individuals and a collection of phenomena and
that the individuals are asked to state their preferenoes for the phenomena The
.instructions may be of the following t.ypes )

1. Chogse one out Qf asetofn phenomena J f L -

2. Choose k oiit- ofa set of 7 phenomena. - . .o S . o

3. Choose one of a sene!«o\subsets of the n phenomena. ; T .

4. Choose oné out of every possrble pair of the phenomena.
When sample members perform “one or, another of the’ above tasks they state their
« preferences for the phenomena chosen, and the data collected are called preferen-

tial choice data. For this type of data, we assume that the set of stimuli and the
xrndrvrduals revealing their preferences can be mapped together into a Jornt space.
This joint space i a psychological space and both stimuli and individuals ire

mapped as points in such a way that the relations among the different points in the
spAce reflect the observed preference orderings of the individuals. It can be hypoth-.

esized that each of the individuals who hds'b2en asked to state preferences.among "

the stimuli will have different ideals.as to what an appropriate combmatron of
stimulus attnbutes should pe. Thus, if a particular stimulus has more ror less of a
particular attnbute individual preferences mrght reveaL it to be more or less desired.

hrough a' sequence. of preferential choice statements, an individual reveals where

ach stimulus point ljes with respect to his ideal point. We can imagine that the ..

same basic dimensions are used by most individuals in order to make judgments

about «the stimuli but that,each individual may prefer different quantities of each’

attribute. Thus, the attributes that are perceived in any. stimulus will be mapped
into the space in proportion to whether or not an individual desires that particular
£
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\ attribute, in other words, 1n relation to where his ideal p@ﬁq lies with réspect to -
arly dimension by which a given attnibute is tagresented. Given a sample of individ-
uals and a sample of stumuli, the sfimuli ‘{na)),bem.pped into the same space as the
individuals. The problem then is to.find huw the idniduals and the sumuli can be

. mapped into a spage of nunimum dimensionality lu‘ref]eul the preference orderings
of each of; the individuals.

T)hxs particular problem becug"les complicated somewhat when we realize that
when chousing between pairs of phenomena, for example, subjects will not always
reveal the same preferential ordering. Indeed. m an, experiment where a large num-
ber of preferential choiies are made, each indiyidual may make intransitive choices,

ey o thatas, he may prefer A to B, Bto C,but C to A. If there are no such intransitivities

n the preference ordenng, then stimuli can be rank ordered for each individual -

from most fo'least'preferréd and a unjdimensional scale for that individual can be
compiled, While thc_/pr,oblem\still remains to fit together all’ the individual uni-
dimensionalyscales, it, becones far more complicated 1f any given individual has
_iniransmvitn&tv ‘in=his preference orderings. Intransitive preference rankings (or
preference ofderings) of objects cannot be arranged i simple rank order. Intransi-
tive preferagnue ordenngs may occur w!u:n a stimulus object with multiple attributes
evukes in 4 respundent an ordering based on a paftn;ula.r dominant attribute for one
compariscn, and then evokes a rank urdering on the basis of"a different attribute
for a second comparison, For example, candles. may be considered to have the
attributes of brilt]ene;, chewiness, quality of chocotate, or type of filling. Given
any two candies, an,indlvidual may compare thém %o the point of view of
brittleness but when comparing either of them with another, an alternative attri-
bute such as type of filling may be used as the distinguishing criterion. ”
Coombs’ idea with respect to this preferential choice problem is to unfold the

~ space in which preferential thoiced are being made Such that both individuals and

.. oBects are mapped as points in a joint space and the mutual relations amdng the .

) points reflect the observed prefefence ordenngs of the vartous individuals {7, pp.

"80-192}. The unfolding .of choices is not our major concern in this paper, but. 1t N

does provide one basis for the multudimensional scaling algonithm developed by

Coombs, which is referred to later in the paper. - " . .

. The secong type of datg theit Coombs defines is single stimulus data. Hera\we
assume that vur sample 1ndi\\1”d':r£1‘s are presented with a4 set of homogeriequs stimuli
(re., stimuli from a single populatidn such as“pol'nic;l candidates, supermarkets,
ete.), unly now the individual 1s asked to make a judgment at;gut each stimulus in

;o furn. For g:x.mfple, one may be asked whether or not Mmﬂﬁ vbtevfor\z‘l.certain

politician. In this" case, if we agan regard each individual as having an ideal point o

then we can imagine that ea?h stimulus when-presented to-the individual is said to
¥ lie either within the. “neighburhood™ of his ideal point or outside this hypothetical

- neighborhgod. This would, generate his yes-no response. These,data are sometimes ' -

“described 1n abstract terms as “proximity relations” and are somewhat different

from the order relations expressed in preferéntial chaices. -
‘A third type of data arises when we ask in(ﬁiduals-té@dclcrminc an order

-‘M
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_ relation on pairs of points from the same data set: these are called stimulus com-
panson data and the method of collection is generally the method of paired com-
parisons. Consider the” candy example mentioned previously. Assume that we sug-
.gest every possible pair of candies to our subjects and that we ask each individual to
judge between the two candies on the basis of some actual or pergeived characteris-
tic. In the simplest of all experiments we would simply choose a single attribute
. suchas brittleness, for example, and ask for comparison between the candies on the
basis of thrs attribute. Judgments would therefore be presumed to reflect dif-
ferences among stimuli and not among individuals. If, however, we find that the
individuals do not agree with respect to their interpretation of th ttributes, then a,
- frequent technique is to subdivide the population such that the groups created are
.homogeneous with respect to”their perceptions of the attributes\ Note that in
comparison to the two previous procedures the individual need not beintes
as a point in the same space as the stimulus. Rather, the compansons between the
sstimuli enable us to locate them in the space of some drmensronalrty such that
distance between each pair of points in the space is rnterpreted as an indication o
the similarity or dissimilarity of the objects. Short distances rndrcate lugh degrees 0
similarity and large distances denote dissimilarity.

Thg method of collecting paired comparison data ean, differ somgwhat from
experlment tQ expenment In stimulus comparison experrments frequent use is
made of payred companson triadic comparisons, and comparisons of pairs o/f dyads
{7, pp: 3-59; 444-462] The typical paired comparison experiment rnvolves subjects
being .given all possible pairs of objects and then being asked for some type of |

. comparative judgment related to the pairs. If it is assumed-that self-similarities (ie.,
comparing the object to itself) are ignored and complementary comparisons are’
equrvalent (<., A B is assumed the same as B-A), then there are: n!n- ) pairs of

objects for whrch some type of comparatrve Judgment is requested. The ultimate
. aim is to obtain the ordenng of the paired objects upon the' basis of some psycho-
- logical continuufn. The procedure is based on one, of the fundamental principles of
the Law’of Comparative Judgment. This states that any. given stimulus has asso-
ciated with it a most frequently ‘aroused or modal discriminal process on ‘sonie
continuum. It is accepted thdt any subject may choose different attributes of the
stimulus object when comparing the object with others, but it also assumes that the
discriminal process (or reaction of the subject to the stimulus) is distributed nor-
mally around a mode which can be called the scale value of the object. Thus any
two objects may differ with respect to their scale values. The purpose of t the - paired
<comparison experiment then is to allow the scale values for any two Stimulus
- objects to be compared so that statements can be made about the degree” of simi-
larity or’ difference that they evoke in any respgndent By finding the fr}%hcy
with which stimulus i exceéds, equals, or is rated less than strmulus 1 we BBtain
judgment as to the relative magnitudes of their respegtive scale valued
In stimulus comparrson experfments, the stimulus attributes upon Which judg-
- . ments are made are clarified for the individual. If we permit the subje\'t fr
El{llc o r\‘ r 5. ";")J :
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choice in companng stimuli, this leads to;he‘deve’lf)(pmen\t of a fourth kind of data
called similarity data. With this type of data the individual is presumed to petceive
each stimulus s & union of sets of attributes. Again, it is assumed that the stimulus
is able to be represented by a point in space, the coordinates of this point cor-
respond to the projections of the stimulus on the various dimensions which the
individual chooses as being relevant. The object of n makmg this Jpe.of compdrison
. Is toattempt to determine the minimum number of dimensigfs which are us$d by
individuals when comparing objects. For this type of data, cOmparisons are fnade
* usually by asking subjects if one pair of stimuli are more nearly alike than anpther
pair. In other words, we attempt to find out whether the distance separating one
« pair of stimulus pomts is less than, equal to, or greater than the distance separating
another pair of corresponding points. In a sense, an_attempt is made to deterfnine
an order relation on the distances implicit between pairs of points where al] the
points are from a smgle homogeneous set. Multidimensional scaling model§ are
commonly. used with similarities | data in an attempt to construct some type of

stimulus space from measufes of thp interpoint distances between phenomena.

Of the various ypes of data available, geographers have experimented to sbme
extent with eacho%’although the use of paired comparison procedures for collj&ct-
ing datd is becoming somewhat more popular Examples of such experiments
include askmg consumers to select one of a pair of shopping centers, fowns to visit
in order to purchase given go%gs or towns which would/ be selected fot purposes of

migration. The frequency mthwhxch any given pair

ember is.chosen over others

# s then recorded [545]. For eXample, Rushton n;?erpreted the movement {of .

¢ farmers to towns in Towa as%e“butcmne of a choice process which could be
.inferred to be a paired compa type procedure. Visits to each place were trans-
formed into dissimilarities measures first, by recon}dmg the number “of times town

“type { was chosen (for a specxﬁed shopping trip) ov,er town type j when both iand .

.- wege present in a feasible area; secdnd by regardmﬁ a proportion of 0.5 as being the
maximum perceived similarity, and then by Fr} ing the difference between the
derived propomons and thlS max:rr‘lum_percewed sxmllanty

t

where d  is a measure of dissimilarity. Here a sfall value for d, represented small '

dissimilarity between towns, and a large valtie indicated considerable dissimilarity.
Most multldlmensmnal scahng analyses use anly the upper half of a paired
comparison matnx Thus only n(h- n-1) compansons are used as input. Most’ comput-
: T2
T mg algorithms, ‘however, allow optional inclusions for diagonal and lower half
matrices and they can be used either with complete or incomple te data.

\.-,

. Approachw to an-Memc Multldlmensmnal Scaling (MDS)

It was prevmusly suggested thgt 1mpllc1t in every collec%n of provumlty
EI{ILC ' 6 ' L
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measures (such as, measures of similarity and dissimilarity) is a kip@ of spatial
structure. The basic problem oi’ MDS is to uncdver this structure. While it is general-

. ly agreed that greater degrees ofsrmrlarrty infer closer distances (and vice versa), the °
former are only, inplied distafices and may not easily be transformed into metric
form. However, in Shepard’s terms: “If some monotonic transformation of the
proximity megsures could be found that would convert these implicit distances into
explicit drsta{tces then we should be in a position to recover the spatial structure
contained only fatently in the original data” [50, p. 127].

The various approaches developed by authors such as-Coombs, Torgerson,
Shepard, Kruskal, McGee, Guttman, Lingoes, and Young represent attempts to
recover the latent spatial st'rgctures' contained in proximity-type data [7, 57, 51,
29, 38,39, 18,32, 63]. ) —

The relative advantages of the non-metric apptoach in searching forlatent spatral
struc ture have been summarized by Lingoes and“Guttman: - .

One of the chief benefits to be derived from constyaining the solution non-
metrically, rs,of course, that in general a smaller space is required to reflect order than »
to reflect metric. Of greater importance, however, the dimensions themselves may well
aid our undefstandmg of the underlyrng interdependencies free of the attenuation that
can result from mnon-linear relationships. Furthermore, when some lawful structure or
pattem is present in the data, e.g., a srmplex a circumplex, or a radex, a non-metric
analysis wall feveal the configuration whereas a metric approach will obscure the Taw-
fulness {32, p¢.~48.7] v -

<

& e, v
l The basic élements of non-metnc MDS algorithms. Althouﬁh there are dif-
ferences among the angntthmurrently in use, there are also broad similarities in
terms o.f therr constructlon_ . -e,a?u"'res common to the majontﬁ‘bf the technrques
. includew.s 5o :
a) an rnrtr | set of input data frequently generated by a parred comparison
) expenment within which is contained a latent spatial structure (such as
. drssrmrlantres data). These rnput data can be prepared in random vector
. mode, or in, the form of a symmetnc matrix, a rectangular matrix, of a
s tnangular matrix.
b) an initial conﬁguratron of interpoint distances which is manrpulated on
’( successrve jterations in-an attempt to def‘ ie a .monotone relatronsh%p
between the conﬁguratron and the original data.
¢) % computing algorithm (a non-metric scaling inethod) which rncorporates
the strategy for achieving convesgence of the.data and the configuration.
d) a ios§ function, (or “‘goodness-of-fit”) function whlch is used to guide
andfor terminate the rteratrve procedures. . "
e) subroutines for handling missing data and tied data, and for determrnrng
_ step size motions within each generated configuration.
t') technrques for estimating the configuration deformation as'the number of
ensions in which the configyration is’plotted i¢ changed.*
bal Vﬁenerahzed format for a non-metric MDS analysis of complete data has been
provrded (as follows) by Lrngoes and Roskam [33 bp 11-16]. . "

i
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“Let A= a kelement array (or vector) of arbitrary indices of dissimilarity
between all pairs of n-objects, k = n(n-1) /2 . .

= the general.element of 4, (i= 1,2, ...n-l!: .

! . J—1+11+7.,...n)

Let 5, = 6” and ignore therefore symmetric elements and dlagonal elemenls
Define D as a k- element vector of real numbers with elements d = f(P )suc.h that,
when6 <$ l.enherd <dkl,0rd <d R . . R
Note that du < dy implies semi- strong monoton'fcny when some A-elements are
tied and strong monotonicity with no tjes, and dy < dkl implies weak monotonicity
forwo ties and semi-weak monotonicity for ties (the following section discusses
monotonicity). ’ .
Assume D~ A monolomcally now D is a monotonic transformation of the A-
vector whose function is to weight t%e iterations for moving a configuration toward
its goal and to form a basis for evaluation of goodness-of-fit at any iteration.
Define X an an # x m matrix of rectangular coordinates (for a given configuration)
with m representing the number of dimensions.
Define D as a k-element vector of distances calculgted from X between the n-pomts
embedded in a given space according to the standard distance formula given earlier
as equation (1). The general problem statement can then be formalized as follows.
givenA, aninitial conﬁguranon X, a fixed n, and distances calculated between the n
points, try to get D as close as possxble toD (i.e., minimize some loss function), for
then D will map into A. .

The general procedure is to: . - .

1) determine an initial set of coordinates (X) and select an appropriate
dimensionality (m}); '

2) compute the Euclidean distances (D);

3) solve for D - the predictions of the appropnate distances
fie.dg=r(, Bk

4).compute the normaiized loss function (e.g.. STRESS);

5) if the loss function is small enough (or not changing “sufﬁqxently from
one iteration to the next), termmate Otherwise modify X and return to
‘step 2.

_ At this stage, it is pertinent to discuss some of the basic elements of MDS:
approaches as a means of explaining some of the rules which govern algorithm
construction. In particular, we plan to focus on the requirement of monotonicity,
methods of deriving initial conﬁgurations goodness-of-fit criteria, treatment of ties,
and some brief comments on dimensionality. Summaries of a selection of
appmaches to MDS will then indicate some differences in the strategies used to
recover conﬁguranons from non-metric data. . _—

2. Montomclty requxrements The essence of MDS algorithms s the requirement of
mamtalnmg a monotonic ;:Ianon between the original dlSSlmllal'llleS data and the

.
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N lf«non-metrrc const mts are imposed in sufﬁcrcnt ‘umber they begin to act like
MELre, constram{i In the case of a purely ordinal scale‘me non-metric constraints are
relfiwely few ind, consequently, the points on the seale can be moved aboult quite
cxtem?gl wrthéut violating the inequalities (i.e., without interchanging any two
i pomts <As these same poin'ts are forced to satisfy more and more inequalities on the
. n rpomt distances as well, however, the spacing tightens up until any but very small

' rb;mons of the points willsactually violate one or more of the mequalmcs 151, p-

28%‘%%% . ' . f ,y;
*m»:* - & :
Thus,yxx;.,we impose a monotonic cpnstrarnt on the relationship between a set’ of
-drssrmllﬁn ff measures and a set ofdistance measures, we are in effect assuming that
3
~. the rank ‘order of dissimilarities is by rtself enough to obtain a solutron—re to
, obtam‘*th %ent spatial structure. .
omcrty requirements can, be specified in @ number of ways [18, pp.
480-484{1ét t R be the, number of distinct values among the off-dragonaf elements .
ofa %tnxxonsrstmg of an initial set of distance ranking numbers; R = n(n D if,.
and c%& i\i there is complete rnformatron (r e., no missing data) and no nes Where
each 1 ber is tred only with its transpose ina symmet.nc matrix R <n(n-1);R =

T nfn-dd where mformatron is compiete and the only tres are with the ‘transpose

P ] ' z

Now%lv%?ﬁa trial matrix of distances, let Q be the numbez of off- dragonal elements s
ey ~5

whichiare specified (i.e!, not nssing). Because of the symmetry of the data,

Q< ng(fnJ) This allows for the definition of three tyRes of monotonic condmons
Ry

) based on the potentral presence or, absence of ties and/or missing data:
SN .
= R, strong monotomcrty is sard to exist (1 e.,no ties)
2)“%‘ > R, seani-strong monotonicity is said to Exist, |
%ﬁ“R weak monotomcrty is sard ,to exist.

cal th the rank order of ‘the original drssrmrlanty measures (or inyersely mono-

. tonigs zmth similarities data). Thus points-with the smallest dissimilarity nfeasures

shotﬁ%end up with the smallest distances between them in the final spatial struc-

N tur A perfect monotonic relation would involve exactly the same ranking for
- correspondmg pairs of dissimilarities and conﬁguratron distances.

3 .. be a measure of drssrmrlarrty between n “types” of stimuli [28] For a

matsey % such dissimilarities the initent is to represent the n types as 'n points in ¢

Elqc%“‘?% ' .9 -, . .
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dimensional space, wieremn “the interpoint distances (d, )-eorrespond to the ob-
served degrees of dissimilarity between,the n ty pes. Perfeet correspondence would
" mean, for example, that if type 7 is more similar to t\«pe1 than it is to type k then .

the corresponding interpoint-distances would satsfy the same lationship for alls,
j. k, thatis, where 8 >6 d. > d... In other words, if thei)cauonal types are
shown on a scatter p{ot in whrc’h the ordmate 1s drssrmﬂanly (8) and the abscissa 1s
distance (d), then as the points are traced one by one from bottomsto top, the
move is always to thérght never to the left. When this requirement 1s met, a
monotone relationship between drssrmrla’rnv and distance has been found.

In order to, obtain appropnale rank orders for the distance measures, a mono-
tone regressron is perfonned and in this way, by minimizing the sums of squared
differences between the derived set of numbers ‘and the dissimilarities, # 1s ensured
that the sét of numbers represenung the drstances are “as much like” the dissimi-

. larity measures as possiblé. in essence a monotone regression between dissimilarity

" and distance measutes requires that only the distance measures be moved at each
iteration (since the dissimilarities are dimensionless numbers). Differences between
MDS algorithms arise when differerit methods are used to define the transformed
dlslances and to perform the movement of the points. The crmeal problem 1s to
determine the direction and magmtude‘ofany maves of the pomts that have to take .

»7 " place; the two most favored methods are the “method of steepest descent” (or
‘ gradient me thod) and the “method of cotrection matrices” [29, 18]
s %‘ B u’

3. Treatment of ties. Kruskal provrdes two options for the treatment of ties. The
first or primary approach treats ties as an indeterminate order relation which can
- arbitrarily be resolved in such a way that either STRESS or dimensionality can be
decreased The secondary approach regards ties as being evidence of an equivalence
! relation . which shouId as far as possible, be marntarned—even 1f~!he result is to
" increase drmensronalrty or stress [33, pp. 36-37]. ' : |

In the primary appsoach—the one which skal ongrnally preferred {20, p. |
22]-when two dissimilarities were equal (i.e., 8, =8, )it was argued that it was of |
no great concern whether d, or dkI was the larger, or whether in fact they were . 1
equal ornot Thus rfd #d, | there was no pressure to downgrade the configuration, |
the inequality was not reﬂected in, the stress value, and no constrarnls were placed |
on the estimates of distance (dj & d )- The ‘terms (d; - d )2 and (d,, — d, )?
were therefore permitted to be zero (subjecl to the influence of any other existing
consnarn155 Whenever d < dkl, the (transformed) drstance estimates had to follow
the same monotone relation; *o7 could be equal (ie., d. <d -

The secondary approach on the, other hand arguai that 1f 6j - 6, then cither
d” dkl or the configuration should be downgraded unul the equalrty holds. Thus
estimates of the distances must be equal (d,, =d, ). If d L7y, then (4, N -d, ) and

o (dyy - kl) are not zero and are reﬂected in the stress yalue. In other words,” ;
3 whenever6 <6 thend <dkl,and whenever6 5 thend -d
"The essenual drfference between these two ways of treaung tres 1s rn the amount .
they contrrhme 10 stress. In the primary approach, tﬁe ties will contribute nolhmg
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to stress unless they are merged with precedmg or succeedmg blocks: By \%rtu&, of
the mofotone regression that is performed The seconidary approach.in effect pses
the mean of the distances d,) for the tied blocks and thus they remain tied
‘whether or not the tred blocks are merged with others durmg the monotone regres-@
sion. The primary approach appears {0 be the most /widespréad in the major non-
metric MDS algorithms, and a’ recent study. has. copcluded that the primary
approach is to be preferred [33, p: 136]. . ./’\ O

LN
. - 14

4. Goodness-of- Frt The problem of determmmg the “best fitting” confi rgtlon of
derived distances is also important in all the various approaches to MI)S and the . s
method of resolving it vanes from algorithm to algodthm. FOr example Kr;fskal
“{28] uses the normalized “residual variance from the monotone regression to define’
a measure (called’ STRESS) which forms the basis.for determini g the drrectlon and
magnitude of distance movements at each rteratlon and whi en rrunumzed
gives an estimate of goodness-of-fit of the final conﬁguratlon Othe goodness-of fit
measures include “‘squariance,” *“coefficient of alienation,” and “WORK” [61,p, 9‘
32,p.489;38,p. 185].
~ The mdex-of fit STRESS is used both in the Kryskal MDSCAL series of fion-
metric MDS algorithms and the TORSCA routmes Basrcally it is the normalized.
residual variance derived from 4 monotope regressron of distancesand dissmulanty/
The monotone regression in this case involves moving only the horrzontaumstance%
measures in order to compute a line of best fit. This requites first matching the
_ dissimilarity and distance measures, then, checking each distance measure to see if it |
is greater (in a monotonically increasing relauon) or smaller (m a monotomcally
decreasing relation) than the preceding distance. Monotonic transformatxons of the”
distance values,(called disparities in the worked example *in Sectron II) afe then
made to satisfy the inequality conditions in the input matrix. If a set of drstance
(d } values can be  generated sugh that, when they are arranged in vector form, they R
occupy the sare vector position as their correspondlng drssrmllamy (8‘*) measux’es
v then “perfect match” is said to ocqur and stress is zero -
The transforme\d distances (d ) may be regarded as the’ set of numbers tha.t
depart to the minimum degree from the correspondmg set of computed drstances
(d,,), while ensuring that their rank order is the same as that of the ori nal drssxmr-
larrtres Thus if we were to plot a curve to the scatter of(d i 5: ) pomts, ‘the curve
should. move vertrcally or to t}{e"nght never to the left. Since We wish to work or‘ily{D
with the rank order of the 8,;, stress focusses on the drfferen‘Je betwé‘en the comt- *
_ puted distances and the transformed distances, (d.. -d ;- This gnsures that any '
monotone distortion of the drssrmrlanty axis wrll not affect the goodness -of-fit of
the configuration. Thus, if an original point is located at. (d 6,.), the point corre:.
spondmg to the transformed distance. has coordmates of (d 8 ) “Eitting the
curve,” in this case means no more than fitting M d, values (N( n(n 1) I2) Note‘
at the d, are not distances from _any configuration, but are only a monotong *
Sequence of numbers chosen as *nearly equal” to the original dl as possible and
having the interesting property that their rank order corresponds to that of the 8
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Having determmed a set of rfumbers Jnonotonically related to the set of d

" define raw stress as follows: | * 1 - ' ..
7 - \ , v

'Ra‘y;Suess =g+= Z (d;-d)?. (3)
. 1<j i . - ®
Except for normalization this becomes the goodness-of-fit measure. Raw stress,
while being invariant, ynder the ngldfmotlons of configuration (rotatlon transla-
tion, and reflection), xs not invariant under uniforsh stretching and shnnkmg of the &

configuration. To compensate for this, Kruskal originally divided raw stress by a

> scaling factor (T*) which was simply the sum of squared distances. 'I-'akmg the
square root bf the final index led to STRESS being defined as: '
| § S RCAEY WL RS .
t .‘-[1< i i<je ) @

‘

However, in later works, Kruskal decided that rathef than standardize raw stress
simply in relation to the sum of squared distanges, it should be standardized in .
terms of squared deviations about a mean dlstam,e The alternate stress value pro-

: posed, therefore, was! . l
. f
7 S =| 3 (d~d)2/2 d—d):‘ o
? [i<j e <i‘ ‘ \ ®). l
- ~ . " where d is the mean of the dlstaﬁcg scores. ‘l |
' Kruskaf suggcsts the followmg verbal evaluation of §00dness -of-fit: J
' TABLE I. STRESS EVALUATIONS L
R _ Stress (S,) (S) " Goodnessof-Fit St
. _ 40% 20%° - Poor /
: - 20% 0% _ Fair
) . o 10% 5% . Good
- v . 5% 2%% R Excellent < S
- ' 0% 0% Perfect. P ‘
‘ " Source: Kruskal [28, 29]. ( :

// ) _ 5. Initial confi guratxons Since our worked cxamplc follows the Kruskal-Shepard-
Tq,rgerson (K-S-T) mode rather than the Guttman- Lingoes smallest space analysis
wode, discussion of initial Lonrguratlons w1ll be limited to the optlons avall‘able for

&:K:SToutines. . .

S tial configurations may be generated entirely thhout bias (i.e., randofly) or
¢ may. d&liberately structured in an attempt to hasten convergence of data and
generated Lonfgumtxon Two major altérnatives are available in the Kruskal series.
of _pyograms: - . ) S . .
i . v - : . ‘ ¢ N
) " - |

N




i) the input of a configuration “of one’s choosing™ (which tnay be arbitranty

] selectcd):
il) generation ot a pseudo-random initial configuration.

; The YoungTorgerscn routine, on the other hand, uses a semi- metric method of
deﬁmng an 1nitial configuration. In this method the original dissimilarities data are
transformed to scalar products (U, ) using,

'

¢
i

EN . .
-

\VEere S is the original similarity of pomts i and], and p is the number ofpomts
133, p>130}. Thef assuming the “trug” dimensionality of the pomt§ equalsr, the 7
‘ 1argest eigenfoots of the Matrix U are extracted. Each vector is then multiplied by

Yo

o P P ) ‘ "~
_ 2 2 2 3 2

the square root of 1ts eigenroot, and a new sgt; of distances is calculated accordmg )

1o the general \hnkd’WSkl formula: | . . 5 ‘
LN git ‘

g = zi(]v m ; )
4 L o

:where Vv, is the « 5caled entry in eigenvector (a) ‘and m is the Mmkowskl metric
?number selected fof the problem.

Thus the original data are converted to scalar products these scalar products are
factor analyzed such that the dath are produced using only the first r-dimensions,
, “and then finally,'a monotone transformation of distances 1s found whlcﬁ best fits
, -the original idea. Here “best” is determined by an index-of-fit. In fact ‘the best-fit .
o problem is viewéd as a regressign problem with a mdnotone regression of dlstances
and disparities, where “distances” (d, ). are the measurements. produced from a -
[ given cunﬁguratlon by applylng the Mmkowskl distance formula, andc‘dlspantles
/ are the munutomcall) transfon"ned distances (referred to in.oug worked exaﬁtple by
} the termd .

The dlspanttes prpduced by the above method then becomelthe basis for a
)

second factor analysis and the whole process is repeatcd Thus, the Young

Torgerson routine uses a “‘semi-metric” algonthm to defjne an mma] configuration

prior to its mamipulation by:the non-metric algorithm. The routme is called semi-

metric because 1t perfurms the metric operations of multlphcatlon and addition on

the original (dissimilarities) data during the first factor analysis, 'but uses a non-

metric monotone transfonnatlon (the dlspantles) for each successwe factor

analysis. ¢ . . ..
< v ' ‘

6. D1mensxonahty The final determination of the number of codrdinates recovered

for the data rests ulttmately with the expenmenter To assist in finding an appro-
v ¥ e " ’ t
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pnalely dim¢nsioned sulution, the following alt@:uves have been suggested [28] .

a) Undertake the analysis in several dimensions™and plot the relation betweén
stress and dimgnsionality. Generally some notreé‘z}ble. elbow” will occur in
the curve and this should indicate the appropnate number of drmensrons
(Figure 1).

b) If some given t-dimensional solution, for.example provides a reasonable
solution (in termhs of stress size and in terms of the ability to interpret
coordinates),.and 1f a (t+1)-dimensi®nal solution produces no major im-
_provement in interpretability, then the tdlmensronal solution should be
‘used.

c) If there 1s an independent estimate of the statigtical error of the data, then
this gives one an idea of the appropriate number of dimensioris to extract—
in the sense that the more reliable the data, t'he more dimensions dne can
safely extract. °

10

35 | . s ¢

‘STRESS ‘ . . 4

30 ]
25,
" 20
15 ]
10]

5

%)

e

0

. " DIMENSION (t)
e ‘Figure 1. Shepard Diagram

7. A metric example: recovering point configurations from interpoint distances. In
an unpublished paper, W. R. Tobler has developed a worked ¢xample fof the metric
scaliig problen ‘of finding the point configuration that most accurately reproduces
a given set of interpoint distances. He has gerierously offered to include it hete
. (Figure 2). Whenever the researeh%r is confident of, the metric properties of his*
similanties data, the procedure described below is a far simpler and more accurate
one for recovering the scale. Howev, 1, when one is confident only of the ordinal
relationships in the ongnﬁl data, non-metric scaling is more appropriate. In both
cases, however, the procedure for finding point locations from distances is 1denti-

” cal-hence the importance of this example. In non-metric scaling, the distances

q

B

O

Aruitoxt provided by Eic:

. . .
. . , . . %

“ﬁlted” are the monotonically transformed distances rather than the onginal dis-
tances In metfic scaling, the original distances remain at all jtimes the target dis-

tanes. Convergence is thus assured. In the case of.non-metric scaling, the original
v )y
, -

b) - 14



L4 L !
» 4 - ¢ . © B
€ '\l‘
. “ }'
. A 0 e .
N n..b_,_-/”—'- —
- < .
T : « s
. - . . .
. v 2 .
' 4 . .
¢ 9 . ,
L4 é . .
: LA ° ‘e ¢ !
-
.. . . . .
'y . B * . \ b . |
f 3 5 oA
* -, R
" ’ = Y . e .
. - "
[ ¢ . v e . .
'S ' o :
k] ° 3 " < - —
s - g \
o /f \ , 4 - ¢ T
.
. f s - -
- .
. i
-
3
! i
n
. "
- .
M
.
!
.
2 i
-
i3
K3
A d +
. e
N .
v
, .
»
: ot
-~ ¢
3
¢ H

[

Y-

.

-

i

.
N
- ) ‘

.
.
.
, -
'QV

. ¢

,

(e ‘ @

$ - .
_ Figure’2. Trilateration Sequencg (Provided by ProfesSor W. R. Tobler, Department.
* of Geography, University of Michigan) ~ * . | {;

z +
‘ ' -

[l{llc , . ' ' 15 ) X ' ‘J{“""\{ : . '.'
==L 00026 G Sy

., . IS




’ B ‘ -

8 tion (eitheg rank-i méages or monotone regression values, see below), but the actual ;
values of th&® rget distances change as the 1terat10ns proceed. - )

Tobler’s tnm!ératlon problem may be stated as follows: o
i) gideBup to n(n-1)/2 empmcal distances D” between n points;

|
|
|
ii find the x,y codrdinates of these points jn such a manner that the dis- ;
|

<
tances d° calculated from these coordinates agree as nearly as possible
with the given distances D This means that Z(D d°)2 is to be tini-
mized. .
N An, iterative graphical approximation mvolves the followmg -
. Step I: Locate the n points arbitrarily. . .
) Step II: Draw stralght lines through each pair of points. _ - ’
Step HI: On each line, center a segment of the desized length. Omit thls
.« Stepifan observation is missing.
Step 1V: Draw vectors from éack point to the ends of the segments
represehting fhe desired distances. -~ .
* Step V: Move eacf point to'the rew posmon defined by the average of °
. the local vectors.. - ! .
\ ' Step"VI If ne points have moved in Step V, stop; otherwise, use the
= el new positions-to begin again at Step I1. ‘
A computa#ional algonthm can be devised by examjning the relations in the v1c1n1ty
g ofone point in more detaﬂ (Figure 3). For each ndi g désired distance:
. ;(l) v ‘, compute ds,; = (Du N C .
, -~ o . Fale _.?_ ] , v
5 B 2)._. o . & . compute t_lg)e directiczp cosine of the line’y '
. e = Xj j . . ) *
- < g cosl9ij —lTi,TL - .
Y 4 -
, ) o . ‘/ poe +
(f3) compute the’ change in the x derCthn at the ith point with respect to the jth
. *point. from el‘ementary tngnnometry asc T -
T dx;, = cos() ds. —4{‘2 (X7%;) (D,J -d2 ) )
IRV | St - do o . oy
» - r. ‘x - » ta
2 . &« 3.
- Similagly, com*\puﬁ_{? “ . B ! \ <%
. "' & . . e ¥ . . L:» \?\' : LR
< T . dy;Tsin 0. ds, S1/2Q67Y5) (D ~d) ). B o &
. - s if \ ~ \ .y . o
ey 7 7 —— N di' K !’ ,; N -r-? !x
(4) The total ghange in the x direction is the average of all of the partial changes ' ¢
q‘ . y_/‘g L n Q ¢ * » - Q‘Q . ¢
- ) ' * dxi ,—— . z qxlj -‘: ¢ » Q‘;ﬁ -
3 !‘} P n"‘] J= l ‘:"\: ‘ ,I:; "'"re:
» "“r./- ! PP -
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e 4 .
\\ . -
\ N : , ' .
Similarly, ' A

4 n
. .wdy' L ? ‘ ,dyﬁ
2 n-1j)= |
N < 4 s\ , .
(5) Set N ¢
X =xprdx
, /
yi = "? + dyl
' + » .
. ’ ’ ’ ! )
‘ B Tl At -+ (i-y2l %
R () Compan;\? . )
- o , ‘ -
p » 27Dy - d)? - . ’ Po
' n-—1 .
\ : J--.] . e -
with the,desired accuracy level ar}d stop, or go to step (1) using the new values.

- 3 ‘ . 1, .
Figure 3. Trilateration Example — Explanation of Terms (Provided by Professor W
R._Tobler, Department of Geography, University of Michigag)
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8. Joint-space scaling solutions. The same principles we have already described can
be applied to the problem of locating m individuals and # peints in a space such
that the order of the distances between the two sets of points corresponds with the
original' Ardered data. A simple hypothetical dxample will illustrate the model. The
rankings of five locatismal stimuli by fou?samplg groups are shown in Table 2.

FABLE 2. HYPOTHETiCAL RANKING OF S'flMULI
BY FOUR SAMELE GROUPS _ .

. . - RS
Stimuli Groups
Locatiofial - v !
Types L A B: .C D
s ! 3 3 1.
d 2 1 2 4. 5
N 3 2 1 2 3
4 4 4° 3 2
5. 5 5 s 4
“‘ . Geometrical Mogel: Legend:
‘ ) T 'L Stimuli
we )l . 5 b X Groups
> 2 3 14 5 \
p I x" X X. .
gy Ry
% A B c b .
—_— ;‘l — -

The distances from each of the groups to each of the five stimuli, when rank
ordered for each group, have the same order as in Tabie 1. The geometrical model is
useful because it summarizes the data in Tablé 1 (n + m coordinates are sufficient
to recavet n*x m original data values), and because it also allows generalizations to
be made about similarity bctween groups as they order the stimuli. For example,

distances between the groups in the model space may be used as a summary of
similarity of point of view. .

[
' . L
D. Selected Approaches fo Non-Metric Multi}ﬁ/mensional Scaling Analysis -

There are at present a number of closely related approaches to the problem of

multidimensional scaling (MDS), and some of these varied approaches are reviewed
below. . ’

1. Coombs. This MDS model is based, on the 1954 work of Hays ‘and is adapted
. from' the multidimensional unfolding of preferential choice data (7, pp. 444-462] .
. The basic requirement for this model is that at least a partial ordering of the
interpoint distances between n pbints can be obtained. The intent is to put a frame
of refereice consisting of r axes on the space in which the points are located, and to
determine the rank order of the projection of all points on these lines. Every pair of

"~ 18
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points in space defines a line artd each line is a potential axis of the space. The alm
of the techmque is to select a minimal subset of the lines and determine the order

of projections on each in such a manner as to satisfy a given partial order of.

interpoint distances. The criterion for seleetmg lines_is a least squares fit to the
. space. =
The fundamental feature of this approach is the finding of a partial ordering of

interpoift distances. For any set of individuals, a complete (or simple) order. of

mterpomt distances between objects is said to occur ‘when exactly similar rankmgs
of the ‘objects are obtamed. Assume there are only two individuals (X, Y}‘, who
perform a paired comparison expcriment on five objeus (A,B,C,D,E) and come

up with the following orderings of data:, ' -
. For X: EBCDA - ;I
For Y: ADCBE . . : ,‘s‘

bl

These rankings indicate complete order in the data. They can be plotted in a space °

between individuals X and Y such that the interpoint relations for each pair of
distances is satisfied. Thus, X-E-B-C-D-A-¥. Here the pair EA is defined as bemg
most dissimilar by both X and Y and al! other distance relations (such as BC, DA,
etc.) can be mamntained in this ordenng If however the order of data for X and Y
was as follows:

For X: EBCDA - . .

For Y: AECDB . / ‘ !

LI

then complete order is not obtained and only pamal order is derived. Here c, and ’

D can be located between B and A for both individyals, but their exaét order and
the position of E1s not easily determined. For example, all we can deduce from this
is that E falls between B and A for Y'but not for X (Figure 4). .

L] v . . .
. - ‘. 5 ORI o 7~
. -
- ¢ .

Figure 4. Partial Order (After Coombs, 1964; .

-

o

The problem attacked by Coombs, then, is that of resolving partial orders into
simple order by searching for the minimal number of dimensions required to locate
these objects. When projected onto the selected dimensions, the dlstances between
_ points located in the resulting configuration must reﬂegt thelr posmon and rela-
tions in the orderings given by individuals. *

The methodology 1nvolved is an iterative procedure basedon least squares pnnc1
ples. The first step is to check for unidimensionality by selecting the largest inter-

point distance and seeing if a simple order of objects’is obtained. If not, partial |

orderings are examined to sge how mgny objects can be located correctly with

' N\ '
- ( - 19\ /\ )
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respect to this dimension, and incomparable relations (such as the C-D order in the
example above) are resolved where possible. A second dimension is then chosen
from the remaining m;omparables and another attempt made to produce a simple

order of these r"mammg distances. Suu.ess would ‘indicate a two-dlmenszonal soluw .

dimensjons using the same principles of selection. Final axes are generally “reason-
ably orthogonal" to each other The end result is a configuration of points in an
r-dimensional space,

2. Tergersor. Torgerson’s origina! methodulogy appeared to have much in common
with factor analysis and, in “act, used a centroid method of fuctor analysis to derive
the factor scores which were used to define the final configuration of object-points.
Taking as input triadic comparisons data, Torgerson converted initial similarity
proportions into standard (Z) scores. These scores were then transformed into a

single matrix of ¢ ‘comparative distances™ between objects and an attempt was made.

+to-find an “additive constant™ which translated the comparative ¢distances to ab-
solute distances. In other words, the absolute distance between objeots (d ) was
regarded as being a combination of some percelved or psychological dlstant.e (h )
and the additive constant (€).
Torgerson [57] suggested that both the formal mathematical methcd uf Mesxck

tion to the original problem. failure involves selection of athird and pcrhaps others

and Abelson and his own shortcut method could be used to define the addjtive -

constant in any given experimental situation. Once a matrix of absolute distances
had been t.ompxled it was transformed again to a scalar product matrix-(B*) and
refe(rred to"an origin at the centroid of all the stimuli. The B* matrix was. then
factored’ (usmg centroid procedures), the relevant factors examined, and factor

" scores usqd as coordinates on each dimension in order to specify the nature of the
final configuration of points. The essence of this approach, therefore, was to find
the kind of distance furiction that was necessary to< convert (psychologlcal)
measures df similarity into real-nufhber measures. .

The differences between this early approach and the one examined in detail in
this paper result from the adoption of a weaker assumption (the monotomuty
assumption) in transforming psychological to real distance measures. While some
basic similarities are retained, the emphasis in the TORSCA program used here 1s
not one of finding an additive_constant but rather one cf developing a set of
monotohically related measures which correspond to the onginal dissimilanty
measures. Since our, detailed example breaks down the TORSCA algorithm 1nto

" each of its componcnt parts, no further expanston is necessary here.

3. Shepard. Unlike much of the earlier"work in MDS Shepard [50} did not try to
deal explicitly mth a definition of the distance function required to translate

“psy chological™ into “real” distances. His aim was to find a configuration of points
in a mmlmun} number of dlmenslons such that a plot of psychological distances
against real distance would reveal the specific function needed for the translation.
His teqhmque was to allocate a set of (n-1) vectors to each of n-stimulus points

-
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.directed o each of the vther (n-1) sumuli, and to indicate at each iteration how the
stlmul\s pomt should be moved in urder to improve the mounotonicity requxrement
At each iteration there was simultaneous displacement of all these points.

’ In urder ty obtain a mmmum dimensional cunfiguration, however another set
of (n-1) vectors was defined for every (n) pomnt which aimed at increasing the
variance of distances at eachuateration. By :'nmmg at an increaSe in the variance of
distance 1t was possible tb collapse the configuration into smaller spaces. To effect
this increase n vanan.e, rarge distances were made lagger, and small distances made

__smaller. The stetative procedure was halted when an index (S) defined as. *

-

v

s =[ S (5= 8, ))2 /n(n—n] S )
- ’ i.j .
where & = proxlmlty measure between S; and S, T
. S(d ) = proximity measure Lorrespondmg to the computed distance (d ),
and - = umber of stimuli, . ,

became * “Small enough’. Since the stimuli would be still defined in terms of co-
ordmates i an (n-1) space, in order to expose the minimum dimensional configura-
ton he had (like Torgerson) to determine a scalar product 'matnx obtain a roots
and vectox solution to the fatrix, and ehmmate ‘unimportant’ axes.

-~

.8

4. Kruskal. Shepard's focus un monotone relationships rather than a specific matlre-
matial function designed to translate psy chological into real distances piovided the
impetus for Krushal's approaeh to multidimensional scaling {28, 2% 30]. His basic
problem was to find a set of distance measures which could be related to the
dlSSlmllan(\ measures such that monotomcity is not violated, and such thaf a
monotone regression of dissimilarity and distance yields a mmlmal value for

* STRESS. .- - y
After, ,gnerating an arbitrary mitial eonﬁguratlon which is used to calculate
distances’ and to generate dispanties, Kruskat prodyces convergence of the Lonﬁgu
.ration and ongnal data by a method known as the method of steepest descen&(or
- method of gradients). Fust the gradient of rawdstress is determined for each pomt
n the configuration in the space of specified dimensionality, .
. % .' ‘ n ] ~ -
- L8 (= _,? ( 1= d ()" ) -\(x,-a (t) - Xia (t)> )]
: Jjel —_ : -
. j (t) | ;
where g 1s the gradignt of stress for distance (i) at location (a), y
d,,(t) is the estimate of distance at itéfation (t), s
. < d;(1) is the actual distance measure at iteration (t),
t - and'x,.a & x, are orthogonal coordinates of pdints i and j.
\- . ‘ :
o : . <21 ’
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A ] .
_ The gradient provides directional information for moving the points in the con-
¥ " figuration along the path of steepest descent such that S(t+1) < (1) (S = Stf35§)§1“
essence, the gradient is determined by taking the first partial derivative of stress

with respect to each point (assuming the partials are negative) [29, p. 1 18], .

=88, it y=BS, e , =88 " (10)

P Once the directions of movement for points in the configuration have been
deterined, the distapce that each is moved (step size) is determined, using:
i) an estimate of the previous step Size (a) — for the first movement « can be
arbitrarily set'(e.g., @ = 0.2) [21,p. 121];" .
3 ii) an angle fgctor'(f l) which represents the_cosine of the angle between
successive gradients in successive dimensions (defined as 4.0 (Cos6)3 where
8 is the angle between successive gradients); )
iii)a relaxatian factor (f,) which is defiried as:

) ./ b= . - .13 = . :
1 + (5-step-ratio) 5-0

where the fivé.step-ratio = min[ 1, ( present stress ) E
stress 5 iterations ago

* ¥

v) a “good luck” factor (f3) defined as: ‘

R f3 = min 1, present stress - ' . St
. ' (preyiqus stress o
Note inii) aboye, if g represents the present gradiént and g the previous one, then
[29,p.122}: . ‘ : .. o
' ) : ’ z . " — i o
..-cos 8 = s g s ) , - _ .-
z g;s'Z) % T g ? -
! . - i’s N i, N . ,
Thus step size at iteration (t) is defined as: o ¢

-

a(t)= a(t-1),f;,f,, f3 .
? - « .
This provides for re];tively large steps at the begi'nning of the iterative process and
fairly small steps-towards the end. Although the length of gradient is partly used as
a source of information for termination of the iterative process, Kruskal relies
primarily- on the angle between successive gradients to guide the iterative process.
The calculation of step size in terms of STRESS helps to partly overcome the

)
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t%%'l'he outcome of mampulatmg distance estimates is to obtain
&p,ants in a space of specified dimensionality in which the distance ¥
_form to the original dissimilarity measures. {rke factor analysis, the proble m{
%ihen arise as to how to interpret the dimensions of the conﬁguratron but at least |

Sne is aware of the number of attributes being used by a populatron in. order to |
e comparatrve ]udgments concermng the ongmal stimuli. ‘
uttman-Lingoes. These multidimensional scaling programs knawn as the Small-
j: 13 .Space_Analysis (SSA) series are developed from the most comprehensrve alge-

):arc treatment of muitidimensional scaling to date [18 33].

" The starting configuration is similar to that in TORSCA described above except

hat it is the rank order of the input similarity measures, rather than the s, values
g!hemselves that are operated on and the initial factoring of the rank order matrix is
ot an itemative procedure as in the TORSCA algonthm The loss funcuon (@) (cf.
ruskal’s tress), is defined as:

»

¢t == (4 =d°) : (n=1/:(n-1)) .°

o

é%nd the nonwahZed phi: R

Y
s vdl

.} -j:é ’GM
LT "?:-’-(d‘d)’/zd’
e i=] ﬁe" i=1

%; heré :d‘ are the monotonically transformed values of dkkno
; ‘*aimages” of the d, [18, p. 479;33, p. 9] . These rank images a‘?e, obtale
' the d, .and by placing therfi in the cells corresponding to thecells rg
' the mput similarity values (s.) Thits, the smallest interpoint dista .
from. a given configuration becomes the rank-i -image of the mte '
; correspondu\g to the smallest s;; value . . . and'so'on.- ’
Jhe d;* serve two purposes: first, they provide_target estimates t
vank-order corresponds to that of the input datg,»may be used to guli)
?jteratrons toward a solution conﬁguratron ahd second they provrde

\

15
be Jused to measure progress in r’eachmg a ﬁnal solution. Thus, whe
r{

. 0, perfect fit obtams The measure of unexplained variance (the
% alrenatron”) is defined: | -

o T ken-a-srrn ':,—

|

e

| P

) The m°fhod of 'mmmrzmg K is known as the “Correction Matrix” me )
srmrlar to that used in the non-metric algonthm in the TORSCA routine (de

e *
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in detail i the worked example in Set,uon 1), wnh modlﬁeatrons in ‘the stepsize

adjustment parameter (a). In the SSA series, alpha varies not only from one itera-

tion to another (as iny both the MDSCAL and TORSCA algorithms) but also from

one point to anotheﬁ A further refinement in the SSA series 1s that iterations are

allowed to proceed for agivenset of dl before the re-definition of a new set ofd

N on the bagis of new'computed values of d, (known as the two-phase process). Some
advantages. are derived by formulatmg the algotithm in these terms [18, pp.
485-486] . s

«

- E Selecte Problems in Non-Metric Scaling
o s o ; s
We drscuss below two major problem areas which must be confronted in using
_multidimensional scaling. One is an interpretive problem—that' of finding substan-
tive meaning in the dimensions of the recovered conﬁguratrons The otheris a °
problem in algonthrn construction’ and is concerned with ensuring that whatever
* gnodness-of-fit function the algorithm has attempted to minimize has in fact been W
niinimized. Some of the earlier scaling programs were particujarly prone under
certain conditions, to lead to * soluuons that were far from the optimal possible.
This problem of Jocal minima and convergem.e is discussed first. | -
. . Cou -
1 Local minima and the convergence process. A goal of all of the scaling algorlthms
™ discussed was te avoid situations in which porﬁs would becom#é located such that
%ﬁmall movements, However computed, would always lead f0 higher stress éven
. though some other configuration of the points might exisy/for which stress’ would
+  be apptecrably lower. A'number ofstrategres have been ggested to ensure that the

58 33, p. 117} the tesearcher
(fkally random) starting configura-
tions. Thus the hope is that local entraprient gMseints will be avoided in at least
some of the “runs.” With this strate‘gy the :'7 st-fitting‘solution configuratioggis
accepted [20]. ST e —— -

~

_&g Multiple solutzons. In this strategy [25, Py
v computes a number of solutions from different

L4

P8 Selection of ing
[53] that
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_local minima problems s to retain after aify iteration the capability of relurmng to .
the configuration prior to that iteration if either stress has increased by 20% or
more. or 1f the angle of the gradient after the iteration (computed to determine the
direction of movcm%m for any pumt) 1s close to being diréctlf opposite (180%) lo
its value prior to the iteration. . N . .

Al M -
Y

d. Varving the target distunces. The distances lﬁa} the configuration points are
attempting to match are of crucial significance to the lucal minima problem. While
the d of Kruskal have the advantages of speedily converging (when.used with a
sensmwe step-size adjustment procedure). they have the dlsadvamage of changing in .
e value between iterations. With buth configuration distances and- tafget distances
& changing, smooth convergence s not guaranteed. indeed, erratic behavior some-
umes occurs. Lingoes and Roskam [33, pp. 133-136} Have experimented with an
. - algonthm in which the target distances are, alternatively, the d* (rank-lmage dis- -
‘ - tances- used to minimize the Guttman-Lingoes coefficient of allenatnon) and the d
¢ {mofiotone-regression distances or disparities) used to minimize stress This
A seguence of targets applied to experimental data in a succession of analyses showed
very low incidences of local minifita. They ¢ conclude that, although this stratégy
mvolves more 1terationf than one which stay ed with the one set of target distances,
it 1s sufficiently impressive 1 avoiding local minima problem$ that it is incofporated
in their revised algorithm MINISSA. ' ‘ .

A 4
-

2. Interpretations of scale dimensions. One of the fundamental problems in thc use,
of MDS 15 that of mterpreting the dimensions in which eonﬁguratlonﬁ dre mapped
In some cases this particular problem doés not arise because® the researcher is
interested unly 1n the position of relation of thé chﬁguréthl points with respect
to each other (for example, in determining clusters of stimulus pomts} However, in '
other cases the scale value derived from pro;e«.ung any E,lven pdint onto arn appro-
pr\ate dimension of the space is sought aflcr Under these’ elruumstanccs the mter-
prctabxhty problem arises. *
, The problem of identifygng the dimensions of any eonﬁguratlon .has béen
Ecsolved m a number of dufferent ways. For many of the gz.ogrzrphxcal sludles
tioned in this paper, some information is known about the location of stimulils
1s |n 4n vbjective spa«.e prior to the buxldmg ofa conﬁgur:mon When this type
v rmation 1s known, constraints can be placed on the number df. dimensions in
whi output configuration is produced such that one attempts to rephcate the -
spatial s ure of the original objective configuratjon. Thus in Tobler’s use of
MDS algon| as map transformations, he is ahle tuLnent conﬁgurauons jin the
same way as selected map projettions are oriented, and to m.terpret distances
according to disthQces measured on these projections. Similarly, in the urban
distance perception Sdies discussed, later, the locations of the phengmena bemg

+

could therefore be rotated, reﬂeeted artd translated until’ the posmonal relauons in

the output eonﬁgurauun have the same directional cqmponents as Irr the ongmal
’ . 1 . r
: i
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-+ data. In both of these cases. the problem of identifying the dimensions themselves
are trivial ones. , .o ) ¢

. In cases where the configuration of stimulus points is not known, cons:derz;bl;
ingenuity has been used m order to intetpret dimensions. For example, 1n one study
(IlI-A-2) "a° large number of persopal, social, economic,* and attitudinal
characteristics were collected for each mple respondent, and various types of
- i characteristics were collected for the stmuR oints. By investigating the scores of
* stimulus points and individuals on umdimensional scales of each attribute, the
author was able, to interpret his dimensions by choosing those attpibutes which
‘ appeared to be most highly correlated with the derived scale values. In gnother
study (I1I-A-3), dimensions of the configuration were interpreted ip terms-of
. qualities of the stimulus objects that had been derived from independent scaling
analysis. Thus, %hen the. configuration of, stimulus points is,unknown, it appeq\rs
that the most appropriate Tnethod for identifying dimensipns s to cotnpare the
scores of each stirhulus point on each dimension with some prior selection of
attributes of the stimuli. Those attributes having the highest correfition with scale
values then lend themselves to use’in interpreting dimensions of the configuration,
Another point which is seldom discussed in the literature 1s that of the
positioning‘of the axis of the configuration space. It appears that, for the most part,
s¢ ues are referred 16 the centroid of various configurations. This means in
effect thanan arbitrary zero point is established and the data can be interpreted at
» no Higher Il than an interval scale. In terms of the problems associated with
< interpreting ‘cOgfigurations, therefore, there are certain similarities with other
multivariate k(ech {ques such as principal components and factor analysis. We may
conclude that thexg are cortésponding difficulties in  the interpretation of

dimensions just as ther~age in these other metric methods\ofmultivariale analysis.
- T 4 ’
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. A, The First Examyle .y

- [

1. THE NON-METRIC ALGORITHM: A WORKED EXAMPLE ,

0ur discussion to this point has centered on the objectives behind multidimen-
§10nal scaling approaches and on the question of the appropriate criteria for evaluat-
ing goodness-of-fit. Several algorithms have been developed to meet the stated
objectives, and only recently have any systematic attempts been made to compare
the relative performances of the different algorithms [33, 43, 53, 62]. It is our
purpose here to explain multidimensional scaling through the mechanics of a hand-
worked example, and we choose in the example below to solve a problem using one
of these several scaling algorithms. N

The particular one chosen was based on the availability, at the time of writing, ,

bf a clear description of the algorithm. The one used is that developed by Young

and Torgerson [61, 63], and it is applied below to a very simple, hypothetical
problem.. In the following section of this paper we will discuss more realistic
examples. However, all such applications of multidimensional scaling techniques to
date have been with data containing too many points for solving in a hand-worked

.example in a reasonable length of time. Even the simple hypothetical problems
 described below would take a day or so to solve by hand-calculator methods.

. AR i

The problem wg outlm’?w one in which the solution is known’at the outset, but
the worked examg\e below is sucfthat the information derived as a sgluuon is not
explicitly contained M any of the initial data from which it procee The multi-
drmensronal scalrgrg problem recall is essentially one of finding thq{ locations of
point$ in a%pace of any given number of dimensions such that an ordermg of the
distances between pomts in this space best corresponds to an ordering of the points

in the original input data. Thus, it 1s implied that the researcher possesses knowl-

“edge on the order rejations between a set of'points (usually from experimental

data) and that he hypothesrzes these order relations are derived from a mental
cor.” quration. of the points (unknown, of course, to the researcher) The purpose of
the scaling, then, is to construct a configuration of points from which measure-
ments can be made between points on which the order relation corresponds to the
order relation of the intqrpoint distances in the experimeptal data. -

In Figure 5 we portray an arbitrafy configuration of four-points in two dimen.’
sions, in Table 4¢{he distances between the points are shown; and in Table 5 the
.order relation of these distances is shown. In the worked example, the information
of Table 5 is the oply part of this initial data that is used. However, smce it is
derived from Table 3 which in tum is derived from Figure 5, it is possrble to check

. the accuracy of the solution developed below by armg it with the arbitrary

conﬁguratron in Figure 5. In briéf, thereforg, the pM®tem can be described as that

~ of deriving the essential propertres of this ﬁgure solely from 1he information con-

tamed in Table 5. L L

N 2T
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COORDINATES FOR THE ARBITRARY CONFIGURATION
IN FlGURE 5

/j Axns a Axis'b |
Q ° - Pointl - 1.0 ° 1.7 .
Pomt 2 1.1 1.2
Point 3 05 # 20 -
. Pomnt 4 2.15 04 )
TABLE 4. INTERPOINT DISTANCES IN THE ’
. ARBITRARY CONFIGURATION
1 2 3 4 s
1 0.0 , 0.5 1.09 1.75 '
2 0.5 0.0 1.25 1.30
.3 1.09 1.25 0.0 1.60
4 1.75 1.30 1.60 0.0
TABLE 5. ORDER-RELATION OF DISTANCES IN TABLE 4
; 1 .2 3. 4 :
| " 1 0.0 1.00 2.00 6.00 .
H 2 - 1.00 0.0 / 3.00 00 >
N *3 2.00 3.00 0.0 5.00 ¢ ;
_;l. - 4 6.00 - 4.00 5.00 0. 0 .
& i
1. Overallggategy. The. problem is solve in a ser\l(:s of interations, each one of
which comprifes four stages. We begin with a randot¥ confguratlon of the four
points in two: dlmensmns (the initial configuration). N
/ > '
The strateg& for Yolution is to move successwely closer to the solutlon on each
iteration, stbppmg when the index of fit shows that the previous iteration has
resulted in a*hew confguratlon that is not superior to that of the previous one.
2. The four stages. Step 1. Computation of distances: Distances between the points
of any configuration are computed fram the formula:
It QRZ '
= 1/m
d;= | = €| ! . o9
a -~ -
1]
"The worked example docs not exactly parallel the method suggested by Young and Torger-
son [63] since, in the interest of reducing the | number of iterations required to reach a
solution, they suggest a strategy of first preparing an 1nitial configuration by assppng mctnc
properties in the jnput data and then optimizing the configuration by the method outhned
" below. In the first section of this example we confine ourselves to a discussion of the hon-
metric algorithm since this is the essential step common to all multidimensional scaling tech-
niques The Lomputation of initial configurations wnth propertics approaching final configura-
tions is discussed later in this section, . ¥
\)4 * . 28 ’ . ' -
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< ~_ _where i and j represent any two pomts in the conﬁguratron X; “and x,_ are the

< coordinates of the points on axis a, ris the numb of axes (drmen‘Srons) ’for which - -

, 7 the solu,tron is bemg computed, and m is the Mmkowskr constant. [52] determining '
the type of drstance metric for which the solution is being determined ,g,g, ) j
Euglidean distanice has the Minkowski constantof 2. ., - T4
‘ Step II. Computation of monotonically transformed djstances (disparities): The
purpose of this _step is to constrain the drstances from the given configuration
that they do not violate the ozgder relgtroh of the on?r‘r'il irderpoint distaices (m

. this case, Table 5). This is achieved by msuan that if one were to plot the valpes

. of this table (y axrs) against the monotorically transformed values of Table 7 (x_, .

‘ axis), the “‘curve” joining these points would never move to ‘the left but only

vertically or to the right. These monotorfically transformed distances are known as .

“disparitiesi’; they are not distances from any’known configuration but rather are a

monotone sequence of numbers as “nearly equal” to the distances in the given

@onfiguration as is possrble without violating the original order relation of

interpoint  distances. , It is reiterated that ‘the purpose of * ‘non-metric.

N4 piultidimensional scalmg i¥ to construct a confi guratlon of points in any:given

rgnber of dimensions sueh that the mterpomt drstances and the monatonically

. constrained drstances (drsparrtres) are as similar as is possrblé [28, 29, 61]
[T .
TABLE 6. COORDINATES FOR THE INITIAL (RANDOM) CONFfGURATlON ’
. INFIGURES - . o
= kS .o . . < x tf
- Axis a + Axisb - '
. . v Porr\t 1 470 .0.10 T e
R . Point2 - 360 - 3.90 .o
- t L . Pomt 3 ;,:\' 1.30 L 3.60 . ———
' N Point4 % . 1.70 ; M‘.,l .00 N
. L el -~
TABLE 7. INTERPQ!NT DISTANCES IN THE INITIAL CONFIGURATION €
: . ok 3 % a4 SR
1Y 00 .95 4.88 3.14 : ; ’
., 2 395 For 3o 347 .
: - 37 [488% 231 00 w2.63 ’
e .« 4 3,14 *

.

347 2;‘63*{(\” '0:0 -
] The drspfarrtr’es aré computed by taking thé -interpoint distance from the

4 “ .configuratidn (Table 7) gcormesponding to the two fnost similar pbints (smallest

ﬁ distance) in the ongmaf data (Tablé ) and coniparing $t with the distance that .
~ corresponds with the néxt two most similar points. If the first disfance is smaller

than the second, then the order of the distances corresponds with the order of the
original similarities and no transformation is necessary. However, if the fi rst
distance is larger tham the second, then the original order relation of mterpomt
distances is violated; since the disparities must not decrease in value when the
similarities increase, the arithmetic mean of the two distances is substituted for' the

e
[




distances and this mean becomes ‘the first two disparity values. The interpoint .
distance from the configuration corresponding to the third smallest original simi-
larity (Table 5) is then compared.with the second. disparity (which_might be_the
second distance or the mean of the first two distances—as discussed above). If the
third distance is larger than the second disparity, it bécomes the third disparity;
otherwise, the mean of it and the previous disparity (weighted mean if the previous
disparity was composed of more than one distance) is computed, and this mean
becomes the disparity value for the third distance and second: distance (also for the
first distance if the second disparity was itself a mean valué). In the first iteration of
the problem described below, the disparities wil} be computed step by step follow-
ing the ptocedure outlmed above. 4
. Step Itl. Computation of goodness-of-fit (Stress): The meadure of goodness-of-fit &
is 2 measure of how far the disparities_ (d ;) depart from the-distances measured
from the derived conﬁguratrona(d 2. The larger these depar'tures are, as compared v
with the distances themselves, ’the greater the error in reproducing the, order relat oo
. tion of the original similarities. from the derived Configuration and therefore the”
poorer the fit. Kruskal’s “stress” values as definéd'in equations Q) and (5) are both-—%m ’
computed in the example outlined here. The smaller the stress, the better the fit.
Step IV. Computation of a rew (imiproved) configuration: As noted, the g greater
the disgrepancy between the distances and disparities from any configuration, the "
poorer the configuration. Therefore, to improve any given tonfiguration each point
should be moved so as to reduce the average drscrepancy between the distancés and
the drspantres with respect to the other points [29, pp. 117-123;61, pp. 6-7]. If
d > d" then point i should be moved closer to point j by an amount proportional
to the size of the discrepancy. Thus, ceteris ‘paribus, after this adjustment the
- ‘dxscrepancy d; ~ d,, should l;e smaller on the new configuration than on the
previous on¢. However, since for each of n points there are n — 1 distances to the
other points, there will:be n — 1 possible adjustments for each point. The mean of |
these possible, ad]ustm\ is the actual adjustment that is made. In the worked
example that follows, the formulae used are from Young [61,,p. 6]. The displace-
nfent of point'j with respect to point j is given by kN e
5 ° . LI N
e % - c. =a(d;, _ &ij) Xy~ Xgy) 14, (15)\‘ ’

o ija 1)

ig'ﬁ

' 9

«&  where d,,.]are drstances computed from the prevrous conﬁguratron )
d,, are the disparities (moﬁftgtomcally transformed distances) from the pre-
viou's ccn.rguratron
s X,a and’ X;, are the coordmates of poipts i and j respectrvelx on axis a,
. a<1d aisa constant of groportronalrty o
. The new position of point i on axis a is the coordmate on the previous conﬁgura
@ tion plusithe means of the correction vectors defined in (15) above: .

/

L] “ n . . . .
. s - . _ \
. % S 2 1(d3" —d) - G, *’Fia)\)dij : - (16)
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Altemanve formulae for reaching the same goal are discussed elsewhere, [29, PP
1'17—176 18, pp. 484—500;43, pp. 23— 29]. o
In the literature of muladxmensxonal scaling, alpha 1s com,monly refegred to as
the “step-size parametet.” Much discussion has centered on the question of modify-
ing the value of alpha as the iterations converge on a solution {18, pp. 491-492,
29, pp. 121-123; 43, pp. 23—29]. In the method of computing revised configura-
tions used in this example, larger values of alpha would speed up convergence (that
is,' lead to a given solution®in a small number of iterations) but subject to the.
constraint that 1f alpha becon?eé too large, there is the danger of moving the points
in-any re {dﬁguranon 100 far. In this example, for the sake of simplicity;
hlpha is given the.value ofJ é. : ,

3. Apphcanon of the four stages to the sample problem. Step I. Compute the
distances: Applying formila (14) to the coordinates of the initial configuration
(Table 6) yields the information in Table 7: g

)' n R
.

. ' . *1:~
/ B e.g., d23 = [(XZa - x3a)2 +(x2b _ X3;)~2],l 2
,4. = [(3.60 — 1.30)>+(3.90 — 3:60)2]!/2 '.‘ (
4 f i ) o -
=231 . , S

Step 11, Compute the disparities: Following the ord;r relations of the dlstances
in the original arbltrary configuration (Table 5), the distances in Table 7 must be
transformed "so that their order does not violate the order of Table 5. This is
achieved in a series of trials as se¢ out in Table 8 below. In Trial 1 the distances in

. the initial confi guratlon corresponding to the first two distances in the ongmal data
. are seen to satisfy the constraint of ascending order. However, the third distance _
. (2.31 in Table 7) violate's this order,’and therefore i in Trial 2 it is combined with the

previous distance (4.88) to produce a wean of 3.60. Since this new number is
smaller than 3.95 (the first distance) it must be combined to produce a new dis-
parity of 3.71 (Tral 3). In suc_:h a manner, the final sét of disparities are computed
in Trial 6 where all have the value of 3.39.

Step I1I. Compute stress: Applying formula (4) to the distance.values in Table 7

and the disparity values on the final trial in Table 8 yields:

T (4. —d)2 ]

: 6 e ) "Sl = i< ! ? ! P
< E. dij . .
) ’ i<j * _
¢ . :w:.. v %
’ y 32

2

[
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2 . - .
4.347\2 ' .
v = — = v .05908 ?} 0.234; (S, = 1.0).
.« \UT3.571 = *
T»\BLE 8 COMPUTATION OF DISPARITIES l\' THE
o INITIAL CONFIGURATION & N
Corresponding - ’
Interpoint  distancesin  -? .
order in nital Disparities (d,,)
original data configiration . .

Rank (Table 5) (dij) Tral 1 Triat2 .Trial 3 Trial4 Trial 5 Trial 6
- " * - - - \
1 1.2 3.95 3.95 3.71 3.65 3.45 3.39
2 1,3 488 . 4.838° 3.60* 3.71 3.65 3.45 3.39
.3 1.3 231 - 2.31* 3.60* 3.71 3.65 3.45 3.39
4 2.4 -~ 347 3.47* 3.65 3.45 3.39

5 3.4 - 2.63 263* 345 339
6 1.4 3.14 ) 3.14* 339
*indicates rank-order violated )

. Step IV. Compute a new configuration. Apply ing formulae (15) and (16) and.

substituting the dlstan\.es from Tab]e 7 and the dxs'pantxes from Table 8, the ad_;ust—
ments to the coordinates on both axes of the mitial configuration are. ,.omputed
below.

ITERATIONT

a ——— —

Point 1 on Axis | -

(3.95 - 3.39) x¥(3 .60 — 4.70)/3. 95——0!6 from formula(l6) -
(4.88 - 3.39) X (1.30 — 4.70)/4.88 = ~1.04 ~ ~
“(3.14 - 3.39) x (1 70 —4.70)/3. l4— 0.24

“:?”4 i mean move (alpha =4.00) - - from formula (17) *
s’ - e
Point 2 on Axis | . )
~(3.95 - 3.39) X (4.70 - 3.60)/3.95= 0.16

(2.31 - 3.391x (1.30 - 3.60)/2.31= 1.08

. T (3.47 - 3.39) X (1.70 - 3.60)/3.47 = -0.04

0.30 is mean mover(:lpha = 1.00) —- from formula (17)

Pomt3onAxlsl -
, (4.88 - 3.39) X (4.70 - 1.30)/4.88= 1.03_ .o
" (231 ~ 3.39) X (3.60 — 1.30)/2.31 = - 1.08 SN

(2.63 - 3.39) X (1.70 - 1.30)/2: 63——01,2’// '
—0.04 is mean move‘(alpha = l.Ob)

\ . AR
i
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Point 4 on Axis i .
o . (3.14 - 3.39) x (4,70 - 1.70)/3.14= -0.24
. (3.47 - 3.39) x (3.60 - 1.70)/3.47= 0.04
{2.63 - 3.39) x (1.30 - 1.70)/2.63= 0.12

. 4

—0.02 is mean move (alpha =,1.00)

Point | on Axis 2
(3.95 - 3.39) X_(3.9_0 -0.10)/3.95= 0.54-
(4.88 — 3.39) ¥ (3.60 - 0.10)/4.88= 1.07
Lo ° . (14 - 3.39) x (1.00 — 0.10)/3.14 = -0.07

0.38 is mean move (alpha = 1.00) _ -

Point 2 on Axis 2

e (3.95 - 3.39) X (0.10 — 3.90)/3.95 = —0.54 :
: vo (2.31 - 3.39) x (3.60 - 3.90)/2.31 = 0.4 .
| (347 - 3.39) x (1.00 - 3.90)/3.47 = ~0.02 = "~ "~

~

-0.12is mean move (alpha = 1.00)

b3

T :Pomt3onAxlsz k
. ceT (4.88 - 339)x(010-360}/488——107
N * (2.31 - 3.39) x (3.90 - 3.60)/2.31 =-0.14
(2.63 - 3.39)% (1.00 - 3.60)/2.63= 0.73 . -
L - F .
~0.11 is mean move (alpha = 1.00) £
- ; ' -
. Point 4 on Axis 2 -

z (314 3.39) x (0. 10—100)/3‘14 0.07
i o (3.47 -339)x (3.90 - 1.00)/3.47 =0.07
(2.63 - 3.39)x (3.60 — 1.00)/2.63=0.75

—0.15 is inean move ( alpha = 1.00) e

- .
- ’

The new coordinates are computed by adding the mean move of any point on
any axis to the prior position of that point on that axis. Thus, from Table 6 and the
computations above a new set of coordinates is calculated: ) .

- . a4 . Y coane?
.

AR Poifit 1 on Axis 1: 4.70.+ —.24 = 4.461
‘Point 1 on Axis:2: 0.10 +0.38 = 0.484 »
>Point 2.0n Axis 1: 3.60 +0.30 = 3.897
. Point 2.on.Axis 2: 3.90 +,-.12=3.784 «
. : il - to
Point 4 on Axis 2:-100 + —.15 = 0.847 ’
" " ‘ . .
L]

. \
**Missing mnformation ray be calculated from mformat:gn previously given.




TABLE 9. CONFIGURATION

. 3
/
~ 1 - 2
il; . 4461 0.484 _
p.) 3.897 3.784
) 3 1.262 3.486
4 1.680 0.847

Step V. Con;pz;te the new distances (ie., repeat Step I). Thernew -interpqint
distances can be calculated from formula (14) and from the cpordinates given
above: ’ - o :

eg.d;, =[(4. 461-3 .897)2 + (0. 484-3 784)2]1/2
=\/ 11.2081 T
= ’ )
‘ = 3343 -

Remaming distances can be calpu]ated from data in Table 9, above. They will have
the values’ m.l'able 10, Below:

. . .

* TABLE 10. DISTANCES

1

2 3 4
' i 0.0 3.348: 4387 - 2.805 BRI
. «® 3348 - 00 2.652 3.680
- 3¢ . 4.387 2.652 0.0 e 2.672 ]
4 2. 805 3680 - 2672 . 0.0 o

Sten V1. Compute the new dzspantm (ie., repeat Step 11): These new values are .
g:ven ir Table 11

R

. .

[44g00.

Order of fnter- . Distancesin o Dispan'tiés
point distances .. the new s N L \
in 3ngmal data, configuration Trall Trial'2 Trial3 Trial4 Trials
' '_—\‘ e . ty
. 1.2 3.348 3.348 3.348 3.348 3348 . 3.257
R3O 4.387 4.387 3.520 3.520 3:348° .3.257
H 2.} 2.652 2.652* 3.520 3.520 3.348 3.257
24 . 3.680 «3.680 .3.176% 3.348 - 3.257 |
. 34 2.672% 2.672% 3.176* 3.348 3.2‘57
L 14 2.805 s 3.348 3.257 .
. 2.805* 3257 .+
- o
/7
*order relation violated .
" TABLE 11. DISPARITIES - *
L] ¢ ! 2 ) 3 \. 4 N .. L4 , 4
. 1% 0.0 3.257 3.257 | 3.257 e
LA 2% 3257 0.9 3.257 3.257
W - 3- 3.257 3.257 0.0 3.257
s ~. 4 3.257 3.257 3.257 0.0 .
. 35
» . ? t
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Step VI1. Compute the new stress (ie., repeat'Step IIl). Applying formula (4) to
the distance values of Table 10 and the d;sparuy varues of Table 11 yields.

\/_. 0.1897: S, = 100

°l

(Compare with previous stress value of 0.243 in Step I above.)

The second iteration and’ those that follow begin with Step IV and repeat
. Steps V, VI, and VII. Results of these steps are given below. All necessary
.| information for computing the results below is given in the description of the
first iteration.

{ -
R / \
- ‘ ITERATION 2
K k (.: ompute a new configuration:
. e, Point | on Axis | 3

(3.35 - 3.26) X (3.90 - 4.45)/3.35=-0.0? .
* =(4.397= 3.26) X (1.26 ~ 4.46)/4.39 = -0.82
. (2.80 — 3.26) x (1.68 ~ 446)/280— 0.45 - =

- —.10 is mean fnove (alpha = 1.00)
.\ -

. Point 2 on Axis | -
(3.35 — 3.26) x (4. 46/— 3. 90)/3 35
" , . (2.65 - 3.26)1x (1.26 — 3:90)/2.65
", ) (3. 68—326)x ¢1. 6‘8 8 --3.90)/3.68 = -

0:02
0.60
0.25

[ I ||

.

- 0.09 is mean move {alp,ha ='1.00)
. ’ Point 3on Axis}] .« -
.. (439—326)X(446—|‘26)/439— 0.82 .
-~ (2.65 - 3.26) x (3.90 - 1.26)/2.65 = -0.60
o : (267—376))(“68—|26)/267—-'009

*  0.03is mean move (alpha= 1.00)
Pomt 4 on Axxso - ’
(2.80 ~ 3.26) x (4.46 - 1.68)/2. 80-— ~0.45

(3.68 ~3.26) X (3.90 - 1.68)/3.68= 0.25% ‘
R (267—376)x(|26—:68)/267- 009 :

~0.03 is mean move (alpha = 1.00) i

Point | on Axis 2

. v (335 3.26) X (3.78 = 0.46)/3B5 = 0.0
) * (4.39 - 3.26) X (3.49 0.48)/4.39= 0.77 ° \
. (2.80 2 3.26) X (0.85 - 048)/2. so--o_os -
i~ 0.20is mean mo’ve (alpha= I 00"
° Y . <.
\
&y . - R




*- " "Point 2 on Axis 2
N (3.35 - 3:26) X £0.48 — 3.78)/3. 35 =-0.09

. : (2.65 — 3.26) X (3.49 — 3.78)/2.65=0.07
e (3.68 ~ 3.26) X (0.85 — 3.78)/3.68 = —-0.34
2;3 —0.09 1s mean move (alpha = 1.00)
) ' Point 3 on Axis 2
- (4439 - 3.26) X (0.48 — 3.48)/4.39= -0.77
5

« (2.65— 3.26) X*(3. 78—349)/265=’-—007 .
) (267—326)X(085—349)/267“ 0.58

—0.07 is mean move (:h:a = l._pO)

) Point 4 on Axis.2 ’
" (2.80 — 3.26T% (0.48 = 0.85)/2.80 = 006
. (3.68-326)x (3.78 - 0.85)/3.68= 0.34

(2.67 ~ 3.26) X (3.49 — 0.85)/2. 6% —0.58 .

»

% -0.05is mean move (alpha = 1.00)
et . CONFIGURATION oo .

E T 2

1 . 4.364 0.685

~ 2 3.987 3.694

3 1.295 " "3.420
AN 4 1.655 0.801 .

;‘x d " o o .

‘Compute the_new distances from above conﬁgurations;' \

. - DISTANCES ; . :
B R A .
= - 1 0 3.033° 4010 T 22 E

2 3.033 0.0 2.707 3.716 :
3 4111 * 2707- 0.0 2.643

4 2,712 4\7}6' 2.643 0.0

= . pr? ¢ : ) .
" K % -5
Corzzpute the new dxspanne._s.*m ’ P .

g . DISPARITIES =~ """,
: 1 2 - 3 . "4’ -
1 0.0 2033 178 3.178 L .
U2 3033 0.0 178 | 3.178 '
- 3 3.178 3.178 . 0.0 . 3.178 -
4

-3.178 p’i:l78 3:178 0.0.,

37 o ' .
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. “ ° N
IV.  'Compute the new stress:
+' STRESS
N . ‘89
2o s, =V ——=0. 1750; (s,=0. 9934)
’ 61.57
v . , P
. (Compare with previous stress value of 0.1897.) - -
- -
ITERATION 3 Cy
. . T —
- S "~ L. THE NEW CONFIGURATION R
L T1 '.7 2".‘; / o
¥ T . .. 4306 - .0.835 ’ . 7
< oty 4.020. 3.60k¢
3 1.333 3.385
. & o 4 1.641 . 0779
- Q R . *’»-
s 1L, DISTANCES... ¥
. . ? a . o .
s " ) ) P l bl 2_ 3 4 . . , . .
£a N 0.0 2.781 3916 ' .2.666 I
. @ 2 2.781 0.0 . 2.695 /3 692 - ' e e
g - 3 3.916 2695 00 < 32625 - -
<L 4  2.666 3.692 2625 0.0 d R
. ) . ' ‘ - 7 \J i
A . 'HLDISPARITIES, ¢ & =~ .
T S S B 3- 7 4., - .
¢ > -, 1 0.0 . 2.781- 3.119, 3 ll9 B ,
2 2.781 ‘0.0 3.119 £3.119- - - R
4 - 3 3.119 . <3119 0.0 - 3.119 ’ S
) A %4 3.119 3.119 3.119° . 0.0 - =
' . .- IV.STRESS ° .
v e = 0:1658;(S; = 0.9714) %
© 5. 6 gﬁ,
=
. Further |terat|ons are possnble (and desnrable since they wﬂl resuhlower stress =% g
"values; and all necessary information is given above for the reader to continue these © i
fterations. As a chefk on computation the results of two 1terat|ons along the path £ %
. to the ﬁnal solution are given below. . . i_*
. . . L. ,‘ ' ) %
ERIC -0 ST
. . . v N
B o ’ ’ ‘ 52{’{&&9049*1 " -, h .."
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O
—'éé-

TERATION 11

., 1.CONFIGURATFION

1700050

i ) 1 2,
1 & ~ 4.136 1.633 f
2 i 4037 2.867 .
3 ! - 1.455 © 3,404
4 1.671 0.696
a\ - * o
< II. DISTANCES o '
‘ 1 .02 3 4 -
1 Q.0 1237 3213 2.638
2 1.237 0.0, 2.638 S
3 3.213 2638 0.0 - 2717, X
4 2638 . 3211 2717 % 00
111, DISPARITIES : T
) 1 27 3 74 s .
1 * 00 1.237 2.883,, 23&3\*
2 1.237 00.+ ' 2883 ° 2.883°
3 2.883  .2.883 0.0 2.883
4 2.883 2.883 2.883 00
IV.STRESS ‘e -
S, =0.0916; (S, = 0.3731)
- ITERATION 20., *
.9:
I CONFIGURATION . -
’ o1 2
1l 4.072 ., 2046 .
2, 4039 ¢ 2449
3, 1483, ¢ - 3455,
‘4 1,706 " Y, 0.649
II. DISTANCES e‘
ST 2 3 oo a4y
I~ - 00 .0.404 - wp2.947 2747
"2 0404 00 (2,747 2.947
3 2947 274774 Sl * 2815
A 2747 2,947 2815, . 00,8, ,w
N ¥ 'ﬁ" 09 4
) L. DISPARmEs L
- 9‘ -] < ‘
1 2 3 4
1 0.0 0404  ¢2.831 2,841,
2% 0404 0.0 2.841 2.84]
3 2.841 2.841 0.0 . " 2.841. .
4 2841 , 28417 2.841 0.0 . -
. - ‘; ; M .d . \,?.
39 - ‘e v !




Y Y }'- ! !
- . f 1“ N .
Sl . IV.STRESS
. . 1] ‘ ' ! !
) J ‘ S, =0.0317 (S, = 0.0904) e .
FINAL SOLUTION .
4 1) ‘

‘ N .
A‘fter 30 iterations, stress was reduced to a value of 0.0085, Other results were as
shown below: - ' : >

CONFIGURATION - -
b ol 2
1 4.054 2.194 - '\
2 4.046 2.301 s~ '
3 1.488 3.465
- 4 1.713 0.640 -
* v : 1
. . '};,
. -, DISTANCES
. » v
. , ! 2 3, 4
1 «+ 0.0 0.108 A 2.864 2.810 ’
-2 0.108 0.0 2.810 2.864 :
3 2.864 2.810 0.0 2.834
4 2.810 , 2.864 2.834 , 0.0 .
. DISPARITIES, .
< 2 3 4 '
! 0.0 0.}08 2:837 .  2.837
2 - 0.108 . 2.837 2.837 .
3™ 2837 2837 0.0 . 2.837 .
X 4 2.837 2.837 2.837° 0.0
, . STRESS S L
5, =00085;(5,=0.021¢) " v - BRI
4. The problem of the initi4l . configuration. * A . recent simprovement  iny
multidimensional scaling algorithms has resulted from the search for a method of '
deriving an initial configuration that would- "be closer to the final solution L
configuration tham an. arbxtfary or-randony one [62, pp. 18—20]. There are two .
reasons -to support sugh a search. First; at s clear that fewer iterations of thgs
algorithin wilt bevrequired if the initial cqn’f‘ iguration is clese to the splution con- .

'f"guratlon thus, a c.onsxderable saving in computing tlme fs achieved. Secorld_,jmce_
the method,of eomputmg the monotonu.ally transforme dlstanees‘(alspantles) isa
weak ‘monotomc transformation in that jt often results m the tying of untled
ongmal sxmllantles data, and since the goodness- -of fit criterion 15 a measurement of

*

. " . ’ \0
Q '

e 40 . y . '
' B ./r;”f,—x_ - { L Py e . : ’ . "{
L, O ngoost - ., 0 s
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.

the reduction in the squared differences’between the configuration distances and

A
the dispanties, degenerate “solutions” are possible in which stress is very Small but

in which only the weak-monotonicity” requirement has been met [43, p. 16]. (A
strong monotoni. requirement is one in which the monotonically transformed
values 1ficrease when the original similarities increase and are tied when the simi-

linties data are tied. This criterion 1s met by Guttman's rank-image transformation ~

with the addition of his strong-monotonic requirement [18, pp. 479-482].) The
different methods of desermining initial Lonﬁguranons m the vagious multidimen-
sional scaling app, baches will not be reviewed here. Discussions are available else-

" where [43, p. 6f 57, pp. 254-258; 62, pp. 18-20]. However, the advantage of

beginning the seéries of iterations outhined in the First Example with an initial
configuration closer to the final solution configuration can be illustrated by retum.

, ing to the First Example and recomputing the. solution adopting this approach. The

4

first stage, in this case, 1s to apply the metric method of Torgerson [59, pp,
254 258] to the mitial similarities to compute the initial configuration(fNgurg.6).

This method consists of computing the two (since this is the proposed dimeN§ional-
1ty of the solution being sought) largest eigenvectors of a matrix of scalar products
computed from the mnitial similarities data. ]
- . )
, ! .
[ ] \ _
3 K .
N . e ! }‘)
- 2
o
. ‘ % »
& .
o '
. ’ ¢ . .
. .
.4 ’ ’ [ . v
N v

Aruitoxt provided by Eic:

_ Figure 6. The Imtial_Configuration Denved from the R’letnc Approach ofﬂfor-

S

gerson on the Origina} Similaritjes -

41, S . 1}
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3 4
2.000 6.000
3.000 4.000
©00° 5.000
'4.000 . 5.000 0.0

1. CONFIGURATION  _

A T 2
~0.589 - ~0,127
-0.073 -0.325
-02884 . 042
0.951 0.025

.~ ILDISTANCES .,

o1 3.
0.0 . 0.629
0.553 ° 0. . 0.780
0.629 0.9.

1.548 . 1.302

Ny o\ .
°{IT. DISPARITIES
3\\ .4 .

0.629 -1.548
- 0.780 1.082

0.0 .. 1.302

1.302 00"

Q

Iv'STRESS - W
+'§,=0.0. SO g
With tHe Flrst Example "the mmal c ﬁguratlon using Torgerson’s metric
method yields a better splution tHan the non-metric algorithm described earlier
after 30 iterations. {his result supports the conclusion that a,better final solution
will more likely be fdundif such a method is used to derive an initial COnﬁguratlon
The Rirst Example is artificial in, that it was derived from metric data, and therefore
_ it “should_not be surprising that a metric fethod can successfully recover the _
" original conhgurauon from which the original similarities were derived. However, in
more realistic examples, it normally is the case that substantial improvements are
..made to the metrically denved initial configuration by the non-metric algorithm
- : such as'the one discussed prekusly

.~

B. The Second Example "

-~

~ .
o -

This worked example, differs from the previous one in that the similarities.
. ] . Py

. a2

. . . L . o,
- 00053
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v oaer
. v . . .
. —~ .
' L]
’
N os

betweeii points with which the scaling begins are derived from field questiontiaire
responses. The existence of a configuration is thus a hypothesis, and'its true dimen-
sionality is also unkriown at the outset. The similarities data result from a paired,
coniparisons treatment of the towns chosen by a random sample of lowa rural |
R households. for major grocery expenditures [45] . This study 1s described in gyeater |
detail in 2 later section of this paper. Specifically, the data indicate. the absolt te |
value of the differencg from 0.5 of the relative frequency with which towns at one |

- range of distance and belonging to a town-size-distance class are regarded as stimulr, - |
|

\

|

|

\

and distance, the purp(;se of the scaling approach is to detdrmine the relative
trade-off between the<two'components. Phus, we wish to answer the following
question for any and all comparisons. How much nearer or fufther should a town  *
of a given size Be“in order to be just preferable to a second town of a givensize at a ]
given distance? . ° ' ‘

In computing these disparities, a problem resulting from ties in the original
similarities is encounteréd. This problem did.pot occur in the First Example,
‘though n pract'ice it is a very commos one. It 15 solved here using the “primary
approach” [43, p. 9]. In this épcp}oach, an order relation within a tie is determird”
P " from the numerical order of the corresponding distances from the configuration,

This is in contrast-to the, “secondary approach” in which the distances from the

configuration are first averaged into a block corresponding to any tied values in the .

(original similarities data. Since the primary approach may result in disparites that

are different. for tied values in the original data, wherbas this’ cahnot happen with

" the’secondary approach, the foMmersis known as the weak monotonicity app'mwh.
. ‘and the latter is kndwn as the semi-weak monotonicity approach. [43, p. 11].

_ The original similaritiés for this Se'cd.hd Example are shown in Table 12 below.

Since the stimuli can be decomposed into the two componentyarl’! of town size

- -

. ———'..\"ﬁr-—\T-ABLE&O\RIGI\MX} SIMILARITIES ¢
N "1 . . ) T m—— T : L] e o
1 Q.0 ~  0.430 0.330 0.140 . 0.400 0.340 N
2 0430 * 0p 0.500 0.410 ~  0.500 0470 .
~3 1 0.330 -0.50Q 0.0 0.370 0.300 0120,
4 - 0.140 0.410 - 0.370 0.0 - 0.500 0.390
5.7 0.400 0.500 " 0.300°, 0.500 .. 0.0 -0.500 -
6 "~ -0.340 0.470 0.12Q 9.390 ‘'~ 0.500 00 . g
Computing t'B_e scdle in one dimension, ¢he initial (random) configuration had the )
coordinates: .. Jom s ’ P o
‘ ~ . Random = :
J Point ~ Coordinates . R
’ * . < ! % c: ’ :\h.
. ) 1 © 0.626 . im
: 2 - 0.940 ; .
. 3 L. 0493 TN ‘ “u
o4 . 0.713 L -
-5 N7 0497 oL <
6 = .z 0.907 |
o8 .’ < ' . ! . !

-

43 v N
- 99058 . e




N

PEN INITIAL DlSTANCES

Pl

The distances and d’lspannes for this initial configuration are shown below.

-

1 2 3 4 .5
1, 314 .133 087+ 129
2 . 447 227 . 443
¢ .3 . ‘ 220 004
4 o i T 216
5 . - J
et S
ot INITIAL DISPARITIES
3 ¢ ) * '
P 2 3., 4 5
o ,
ol 199 160 160 . 199
2 447 199 443
3, 199 ~160
4 o i v 216
. .5 o ‘e . s
. 6 14 v , o, .
: \ | (- :
* 6 e : ITERATION 1
. Point’1 on Axis | ) Y
2 (031—020)X(094—063)/031= 0.12
: 3- .(0l3—0!-6)x(049-—063)/0'1~3- 0.03
T ) 4 (0.09 - 0.16) X €0.71 — 0.63)/0:09 = —0,07
S .* 5+ (0.13-0.203X (0.50 — 0.63)/0.13= 0.07
" — . w6, (0.28—0.20)X (0.91 - 0.3)/0.28= 0.08
) LY
LT 0.94i lS mean move (alpha =] 00) .
'\ ﬁ*% Y (\\
. ad ) T
~%Point 2 on Axis to .
_ . .1 q031-0. ) 40,63 ~ 0.94)/0.31 = <012 ~
SR - -’«3‘; I (0.45 - 0.45) X-(0:49.~ 0.94)/0.45= 0.0
. ", “24(0.23 = 0.20) X (0.71 ~.0.94)/0.23 = —0.03
. . 5 (0.44 ~ 0.44) X (0.71:— Q.94)/0.44= 0.0
6 (003-020)x(091—094)/003= 0.17
. ° ‘

0.00 is mean move (alpha =1.00) -

' i l Pomt3on Axnsl -

=~ - l
Q\O ’-
I PN

2

: N ~ 4

. . L ‘5
6

(0.13 - 0.16) % (063-—049)/0 13=-0.03
" (0.45 — 0.45) X (0.71 = 0.49)/0.45= 0.0
+(0.22 — 0.20) X (0.94 — 0,49)/0:22= (.02

. (0,00 - 0.16) % (0.50 — 0.49)/0.00=~0.16 »

0.25

-

(0.41 ~0.16) X (0.91 — 0.49)/0.41 =

. '0.02:i\s\meha= 1.60) © L. T
B 7 S
x

i LAY 0$ﬁ055

~199
199
-160
.199
410




- R

JPomt 4 on Axis 1 )
1 (0.095- 0.16) x (0. 63—071)/009‘- 0.07
2 (0.23 - 0.20) X (0.94 - 0.71)/0.235 0.03
T30 (0.22'-0.20) X (0.49 — 0.71)/0.22=—0.02
5 . (0.22-0.22)x (0.71 - 0.71)/0.22= 0.0
6 (0.19 - 0.20) X (6.91 - 0.71)/0:19 = —0.00
/ -/
0.01 1s mean move (alpha =1.00)
. J /
Point 5 on Axis 1”
(1 (0.1320.20) %/(0.63 — 0.50)/0.13 =—0.07
(0.44 — 0.44) X (0.94 — 0.50)/0.44= 0.0

J

(0.00 - 0.16) x (0.49 — 0.50)/0.00= 0.16 - -

(0.22 - 0.22) x (0.71 — 0.50)/0.22= 0.0
(0.41 - 0.41) x (0.91 — 0.50)/0.41= 0.0

- L o
0.01 is mean move (alpha = 1.00)
Point 6 on Axis 1

N (0.28 - 020)x(063—091)/028--‘008
2 (0.03 - 0.20) X (0.94 —/0.91)70.03=—0.17
pmeen3, (0.41 = 0.16) X (0.49 — 0.91)/0.41 =—0.25
ey ¢ 4 (0.19 - Q.20) x (0:71 — 0.91)/0.19= 0.00
-5 (0.41 - 0.41) x (0,50 - 0.91)/0.41= 0.0°

L

. CONFIGURATION

_ ©
- II;DISTANCES
: o ' 3

¥

45 -

i, € oooss




A

Y YRR,

O\ h W) -

0.0

0206
0.155
0.127
0.157
©0.157

0.0

0.186
0.123
0.117

- 0.150
0.126

2 3 ‘4 5
0.026 0155  0:127  0.157
0.0 0.349 0.206 0.349
0.349 0.0 0.157 0.127
0.206  .0.157 0:0 0.349
0349 ~ 0.127 0.349 0.0
0.206 _0.127 0.157 0.349

" IV.STRESS
§, =V.IL = 03497 )
89
ITERATION 2
1. CONFIGURATION
l- l ~
{
s 0.666
. . 0915 ‘
, 0.544
0741
0.517
. - 0.793
, L DISTANCES .
~

2 3 4 5
.

_ 0249 W123 . 0075  0.150
0.0 6.372 0.174 0399
0.372 0.0 0.197 * 0.027
0.174 0197 0.0 0.224
0399 .:0.027 0224 0.0
0.122 0.250 0.052 0277

" HI. DISPARITIES.-.

2 3 4 .5
0.186 0123 0.117 0.150° -
0.0 0.318 0.174 0.318
0318 - 0.0 026  0.117
0174 _'0.126 0.0 %g, 0318
0.318 7 0.117 0318 - 0.0
0.186 0.117 0.126 © 03]

Jn 46 .
p2 PR I . %,

IIl. DISPARITIES

.

')O\Un-h.uw—'

0.157
0.206
0.127
0.157
0.349
0.0

0.127
0.122
0.250
0.052 -
0.277
0.0

6

0.126
0.186

0.117

‘0.126

0.318

< 0.0




° . , = 0.3081
. ITERATION 5
' I. CONFIGURATION
1
1 . 0.681
- 2 0.873
¢ 3 0.617
P © 4 . s 0.733 °
‘5 0.508
6 0.764
i = ‘ 1L DISTANCES .
1 2 3 4. 5. 6
1 00 7 0192 0.064  0.053 0.172° ‘0.083
2 0.192 00 ozss 0.140 0.365 0.109
3 0.064 0256 - 0.0 0.117.  0.108. 0.147
4 0.053  0.140 0117 0.0 0.225  0.081
s 0172  0.365 0.108  '0.225 0.0 0.256
6 0.083  0.109 0.147 02031 0.256 0.0
L 'DISPARITIES *
1 2 3 a 5 6
N ~J
1 0.0 0.153  "0.086 0.068 0153 0.086 -
2 ° 0153 00 0275  0.153 0275 0.153 °
3 0.086  0.275 0.0 0,086 0.086  0.086
- 4 . 008 0.153 0.086 0.0 0.275  0.086
S 0153 0275 0.086 0.275 0.0, 0275
6

0.08 0,153 0.086 0.086 0.2 0.0

S :230 ~ - A";'

After five iterations, the yalue of stress was ...30 no further reduction in ths
value took place during the next 25 teations. Substantive mnterpretation. of the
fesulting configuration is facilitated by Figure 7 where the scale values are iso-
p!ethed for graphical display of the tradeoffs between the two conflicting stimuli of
"distance and town size of consumer movement. From this fi igure it is apparent that
for the purposes of making grocery expenditures, towns of less than 1,500 popula-
tion owe to proximity much of the patronage which they receive from th€ rural
population. In general, the lowa rural population substitutes stores in small towns
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at close drstances for stores m-larzer towns at greater distances. The advan"tage of
the results of the scaling procedu:e 15 that, for the first ume, we are able to
determine exactly the arcumstances m which one lown will be mure favorable than
anolher forany and all rural locations. ,
N * v .
i 2000
‘ POINT 6 .
K 3 »
5 . .
) = . L - .
2 ) :
’ 2 1000 v
8 POINT] 3
= ?
3
o
—_
. -
t s
- ' .o
L :
8 L O . : ¢
) 0 ~ 2 5 10 »
- i . X4 ” -
. 7~ ; . ..
- ‘ . Distance to Tcwn . -
ST . " g (Miles)
’
. , Legend: Pomt n».unbéfi\reference the stimuli numbers in
- the fabfes in: which scale valies are compofed
il )
z . .. ———
- Numbers*th boxed™ “are’ Scale values after the -~
.- ’ ) _ Sth iteration. -
Figure 7 Isopleth of Scale Values After the Fifth ltemuon 'lnterpolated' lsref;
erence Structure . . -
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HI. GEOGRAPHICAL APPLICATIONS OF MULTIDIMENSIONAL
SCALING ANALYSIS

. Q/\
The variety of actual and potential apphi.ations of MDS is large and ganges over
many subsety of the field .of geography. Perhaps the timplest way to. arrange |
examples 1s to .divide them into those that use simple space configuration (1.e.
configurations of only the sumulus objects) and joint space configuration (8. those .
_ which map the configurations of both individuals and stimulus objects).

-

A. Simple Space Cutputs .
L
We have constantly stressed that MDS programs cin accept both metnc and

non-metric input. it seeins reSonable  thereiore fo give specific examples of each
tvpe of research problem. . . .

1. Map ‘transformations. Probably one of the most quoted examples of metnc nput
10 2 DS program with simple spa;e.butput is Greenberg's “Roadmap™ problem .
[17]. The basic daza here were the inter<ity road mileages between all pairs of 15

_ <ities in the Lnned States. that is. l"‘i’or n(n-1) mterﬂt) sistances. Th.. aata were )

. hed b
, interpreted as simifarities. data®by ranking the distances with the shonest road
distance represerjted by rank 1 and the largest distance by rank 105, The output
consisted of a confjguration of points in two dimensions (north- south and east;,
west). Discrepancies between predicted configurations—obtamed from a non-metric ~t .
! multidimensiona! scaling program - and actugal configurations were for the most part —
small and.could be accounted for by the simple fact that road distances are ire-
querty not the shortest distances between places but reflectjdetours-dround
ratur! and mbn-made barsiers. Inqther words, iocatons outputtec[b) the program _.
_represent “frue” loLanons if all toad <connections between the pars of cities were
straight lines. The solution here represents a type of map transformanon simulatto
that which would be achieved if the places were [Scated on an elasf' ic map and
joined by lines representing actual roadways, and if the elastic were then stretched
in each dxrecnoo until all road lines were straxghtengd out. Y
Note that in this example where metric input is used. the first step in t"ze
Kruskal algorithm is ta conver: the metnc data to non-metnic (ranked) form. Thus
‘the findl .enfiguration of points is obtained from non-metnc mfarmation. This is
true of all analyses in non-metric multidimensional wahng. However, where the
rescarcher can have confidence in the metnc information he begms with, it's often
advantageaus 10 resort 10 a metric muludimensional scahing. Tobler [54] has
pointed out that the prablem of constru.ting map projecuons 1s one in wiuch the e
final metric 1s usually known tu be Euclidean and the number of drmensions kndwn
to be twe A.cordingly, he argues that empxmal map projections might be designed
to produce. froma matrix of empircal dtsfames between pomts, the {‘best” con-
* figuration of the poin's in tWo dimensions such. that the sum of the squares of the
difference between the ongmal distances and the resultmg confi iguration (map)

-
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distances are minmzed. In other words, instead of beginning with a definition of
properties 1n _the abstract that must be preserved, his procedure would be to begin
with observed distances between points 1n the space and desigh a projection to best
rephate these measurements. After he had computed the 2,080 sphencal distances
between a set of 65 regularly spaced lautude and longitude intersections t,ovenng
the United States. Tobler used Torgerson’s me'tnc multidimensional scaling [57, pp.
255-258] to denve the plane map progection coordmnates for the 65 points. Com-
panng the distances measured from this recovered configuration with the origirfal
sphencal distances, he showed that the distortiorr values were generally less than
two per cent. These distortion values, he concluded, compare favorably with those
on Albers’ and [Amberts conical projections with two standard parallels
In a second example of the use of scaling procedures to construct maps, Tobler,
Mielke, and Detwyler staled the geobotanical distances between New Zealand and
some nelehbonng islands using interasland distapces mferred from a model of the
sion of plant species [55]: Basically, the authors attempted to examine the
déee to which flonstc similarities between New Zealand and its neighboring

. tslands (of which there are eleven i all) could be explained by two geographic

-

factors. (a) the relatve position of the islands and (b} the size of the islands. The
cntical qixestnon was what proportion of the commonality of plant species could be
explaned fully by these two factors” The model they construgted attempted to
answer this question by usfhg floristics relagons_to define geobotanical distances
which were then compared statistically with the islands’ relative locations on the

surface of the earth. In other words, they attempted to identify quantitatively the

flonsuc reletions of locahties. They fhen used these relations (expressed by the
number of specnes common :0 pars of islands) together with island size and
assumed interaction between istands to draw their geobotanical map. The distances
betwees islands on the map were then compared with great circle distances to give
some measure of the model’s worth. Both the geobotanical distances and th'e%great
arcle distanices were inputted’inta a multidimensional scaling program (Guttman-

Lingoes SSA-1) and outputted in a two-dimensional Euclidean space. In this wa

the authors obtamned an empincal map projection which preserves positional rela‘y

tions in the least squares sense more accurately than any other possible map projec-

uon. The actual fit of the maps to the disfances was approximately 98%. In specify-
ing the output configuration in these terms, the authors simaplified the

. m‘terpgtatlon of the dimensions of each configuration f for they ‘represented merely

O Y

-

the north. south, east. and west dimensions common ta any ather map projéction.

D. G. Kendall {23] has exterrded the concept of recovering spatial coordinates
to that of recovenng temporal order. He has shown how multidimensional scaling
can be used to recover the temporal sequencing of a set of data in which it is
“hyputhesized that events oecumng ata pomt mn tlme contain ipformation on occur-

- rences that are known to have been “in vogue over periods of time. [n his

“example. tie objects are tombs and the occurrencés reldte to the presence dr

absence of vaneues of objects. The input square similarities matrix (of tombs) is the

number of vaneties common to the i*h and " tombs. Kendall shows how with

\-
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both ihzs data as well as with hypothetical data, the recovered configuration in two
dzmensxons is a horseshoe form. Ordenng the tombs from the order in which they
appear as one moves around the horseshoe'leads to a seriation of the tombs that is
Qrikingly similar to the serial positions of the tombs derived by classical archaéo-
ogical seriation principles. This raises the intriguing possibility for historical geog-
fgphers of designing research studies such that one might simultapeously hope to
recover a spatial-temporal series. Wilkinson {59] has followed up Kendall’s studies
of seriation in archaeology using MDS by analyzing abundance matrices (i.e.
matrices_in which the values are non-negative and are weakly ummodal in each
column) for the occurrence of Hamiltonian circuits. Hamiltonjan circuits are dg-
Tined as reentry paths passing through each of m vertices in a linear gfaph only
once. In the examples Kendall studied, “graves vs. artefacts” matrices were com-
pi!ed. son 2rgued that the length of circuit in such matricés represents the
sum of’changes of fashions in neighboring graves and allows for the development of

. am for the overall rate of change duringa given period. The minimal Hamil-

tonian circuit gives the minimum period for.a series of changes to take place. Fora
g;ven set of similarities data, finding this circuit involves ordering the terms column-
, forcing a solution in two dimensions, preserving the order of interpoint dis-
ces “as well as, possible™ [59, p. 14], and then observing if there is a clear
Hamiltonian arc. The presence of such an arc represents a check on the seriation in
a éqnﬁgnration produced by MDS methods. H
2. Preferences for politicians. The uses of MDS in political science and political
geograply afford another ilustration of simple space output, but this time non-
metric input is used. Consider a situation where sub]ects are asked to state their
preferences for political candidates. In an experiment conducted on 1,000 members
of the Consumér Mail Panels and a selection of sociology students, Johnson {21]
_ askéd for positions on 35 political statements "and selection of two from a Eist of 14
prormnent political figures. It was suggested that rankings obtairied from such

~ preference data could be converted to their implied paired comparisons and, by

adding over sample members, paired comparison proportions could be ebtained
which were then summarized by Bradley-Terry scale values. These scale values are a
colfecnon of numbers which sum to one, having the characteristic that the propor-

. tion of individuals preferring stimulus “A” from a%ng any collection of stimuli is

estimated by the scale value of “A” divided by the scale values for the whole
collection ofstimuli.”

_ The resulting similarities data conld then ve inputted into a standard MDS
program, a configuration similar to that produced by multiple discriminant analysis,
as shown in Figure 8, would then be obtained. The naming of me drmensxons in
. Figure 8 was based an an examination of the tesponses which subjects made on the
extensive questxonnalre conceming policy problems. Figure 9 shows the other
dimensions which werte_inherent in the initial quesnonmg and ‘the position of each
polmcal fi igure in relanon to those dimensions. Apparently, the configuration could

. be_recovered m‘two dimensions with the “liberal/conservative’ and “government
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involvement” axis appearing to summag;ze best the whole range of possible axes.
From the ‘final configuration, of course. metric dlstances between pairs of points
can be calculated and statements made as to the perceived “distance apart” of

individuals on each of the dimensions.  + . <.
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Figure 8. Posxtlomng of Pohtncal anures in Terms of the Two Key Dlmensmns
(After Johnson, 1969)

3. Perceptual studies. Pexceptua] dxstance is another topic of study that appears
eminently suited to analysis by MDS techniques (with simple spacg output). Two
specific examples are the Golledge, Briggs, Demko study of intra-urban distances
{14], and Whipple and ‘Jledell’s study of black and white perceptions of storesm
-Buffalo (N.Y.), [58}. - .
- . In the study of intra-urban distances, subjgets (all located at one point) esti- °
' mated distances for the n(n-1) pairs of locations selected for the study. The esti-
= 2 .
mates obtained in this way were interpreted as dissimilarities data, and the Kruskal
IV MDS program was used to produce a configuration based on iriterpoint dis-
Aarices. Figure | 10 shows the conﬁguratlon of points denved from the subjects’
. estimates of Iocation. Sjnce the scale of the analysis was quite small, considerable
- accuracy of distance estimates was obtained by some sample members. Breaking the
’ . whole sample down into two groupsbased on length of residence, and the distances
into subsets “toward the CBD” and “awa.y‘ from CBD” revealed some mterestmg
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trends (Figure 11). For example, the newer of the two groups was typified by much »
. poorer estimation of distances, indicating that lack of familiagity with locations
distorts their estimates of distance and can obviously influence behavxor with
respect to these locations. Members of the second group showed improved ‘ability*
toNocate all features accurately. The varfance between the two groups was seen as
an indication, of different familiarity lgvels with the city, with corsesponding dif-
ferences in the rates of forming travel habits, and differences in the choices of
orientation nodes about which mental images of the urban area were built up. -

The other significant feature derived from this analysis was the tendency” 5"
exaggerate distances toward the CBD. This in turt suggests that increasing conges-
tlong% d travel time) tend to increase the perceived distances between places, and
\\’\_Mﬂ denser packing of tand nses around the CBD makes distances appear longer
and individual-places harder tarlocate precisely. . .

Conclusions “drawn from this study were that interpoint dlstanpes which are .
over-estimated probably -reduce the likelihood of interaction between points. Sug .
_gestions were made a§ to the likely effect of distorted’ distance perceptions on
things such as pl’aces chosen to shop,.recreate, and establish residence. Jt seems
regsonable to assuge also that further studiés of this type will throw consgderable
light.on the relationships between perceptual accuracy and movement, and on the
effects that changing configuration (resultmg from informatjon changes) have on
urban spatial behavxor - . \ ; .-
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. ‘Whipple and Niedel)’s study of black and white pejceptions of various stores in
Buffalo (N.Y.) provides the geographer with an interesting framework for the
analysis of perceptual distances. The authors initially used a semantic differential
scale.to obtain a ranking of ten department stores (based on “favorableness™) by
black and white respondents. Frequencies of visit to each store were also collected
and again stores were rank-ordered for the whole sample. lndrvrd\t’al semantic dif-

ferential scores were transformed to 4 “distance” measure usmg the following for-

mula: - i -
. n %
. . ‘ diJ =,z Xia = X4 i
a=| ]
( .
where Idljl = absolute distance between a pair of stores,
’
: "X;,, = semantic score of word pair @ for store (i), - ¢
. . and g = semantic score of-word pair a forsstore G).
The result was a distance matrix of percerved~srmrlarrtres for the n(n-1) pairs of
d . 2
stores this constrtuted the basic mput to the MDS algonihm The results of this -
analysis were most revealing: é . :

'that cluster together in the finat configuration are more competr-
tive” l}ran those that are far apart; - d a

b) black and white perceptions of the favorability of stores varied somewhat

but O\ferall’the perceptions were -quite similar; »

¢) both amples did not necessarily shop at the places Wrth the most favor-

able image; a il

d) further study based on socral and economic class drfferences showed very

little erratron iy the perceived favorabitity of stores: iﬂ:

. While the)study w%dertaken in an integrated nerghbofrood and would' there-
fore not exactly mirror vhriations in’ perceptions resulting from locational segrega-
tion, the me'thods and r!sults indicate that perceptual drstances between competi-
tors-may be a"useful variable in consumer behavior. studies. A modification of this
to find the pﬂe?zveptual distances of stores from consumers (usmg joint space pro-
cedures) would probably be even more. useful'to the geographey.

A further example of the use of multidimensional scaling in the simple space

. sense is pr0vrded by Schwind [49]. Schwind’s interest is in the migration distances

between states in, the United States, The basic input ¢ data are dyadic in nature, and
“the algorithm used is the Guttman- ngoes smallest space analysis program.
Schwind geénerates jnterregional dissimilarities data on the basrs of migrant moves

. and produces a configuration of the states of the United Statés in which proximity

ERIC- : -

analyzed both dyadid streams of movement (i.e. the net migration rates between

evefry pair of stateg)#4nd dyadic rates of movement. Here the ratio of net dyadic to

© gross dyadrc mrgratron is defined as: m;; = M;; — M;; Where: mlJ is the dyadic ratio,
it M .

relations are transf:?ed somewhat on the bases of the migration inputs, Schwind
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and Mu ' M represent the directionally oriented flows between any two states i
andj. .

« . In this case again, only the lower half of the migration matrix was read in as
data, and the solution was obtained under conditions of sgmi-strong monotomclty
and weak monotonicity. Results were produced for each dimehsion up to ten.
Results were interpreted both as dissimilarities and similarities data. Schwind noted
that solutions based on similaritiés data had lower stress values than those based on
dissimilarities_data. He also inferréd that a three-dimensional solution was most
appropriate (by examining the Shepard diagram of the result). Interestingly,
Schwind found dyadic net migration streams to be negatively associated with geo-

graphic distance. He argued on the basis of these results that it is justifiable to treat ®
dyadic net streams as similarity data and dyadic net rates as dissimilarity data. The
output from his study, inctuded: matrices of derived interstate migration distances
in a space of specified dxmeﬂsxonallty the geometric coordinates of each state on -
each recovered dlme ;the distance of each point or state to the origin of the

r-dlmensmn space; aftkgraphic presentation of the position of states ubhe migra-
tion space (see Figures 12 ami\l N . L - L
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. " Figure 12. Migration Spaces:’Similarjtiek'i)ata (Source:3Schwind, 1971)

» Schwind’s paper is an intetesting one, for it emphasizes one of the major prob-
lems involved 'in multidimensional scaling analysis—the interpretation of dimen-

- sions. Upon examining the geometric coordinates of states on the recovered dimen-

“ . 'sions; Schwind argued that the coordmates;dld not seem to reflect any obvious
scalm@f states on the bases of incomiéSuibanization, climate, and so on. ‘He did

», NOt, however, attempt to “correlate the coordmate values thh any scale values
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denved for the 3ppropriafe explanatory vana'Bles He dxd on the other tand,
attempt to interpret the matrices of denved distances of states from the origin of
the migration space. Aga‘x}l his intuitive mterpretatlon was that “distince to ongm
values seemed to suggest that states known f0r high rates of in- fnigration are close
to the center of a migrant’s perception space, and that states known for high rates '
of out-migration are far toward the penphery - s
Another application of multidimensional scalmg analysxs this ‘tinge using a
ruskal-type algonthm is seen in Gould’s analysis of space preference measures
wit regpect to the residential desirability” of various ‘states in the United States
, [15, 16]. Whereas Schwind used-net migration rates between statesLto give him
* some indicition Sf the sxmllanty and dissimilarity of states, Goufd obtained pref
_erence orderings of the states from a sample of 25 resident graduatte geography
students at Pennsylvania State Upiversity. In addition to- obta‘“ ining these ordered
data, Gould colleéfed interval-scaled data,on the “relafive advantages of states. Ini-
tlally, Gould consxdered the point confi iguration of 51 states in a two- dimensional
Euclidean space The arrangement of points in this space was interprete{ as indicat-

S (ing the similarity df states over the range of subjects. The stress value,1 cidentally,

was .224 in 2 dunensxons Figures 14 and 15 indicate the point configurations with
both interval and ordinal scale measures., The scaling devices produce mterestmg
clusters of states with perceived sxmllantles "The ordinal scale produced a more,
* _circular distribution of points andfconsequently one that was comparatlvely easier
to 1nterpret Gould suggested th'at the configuration resultmg from tyhe interval

.
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scaled data mrght be interpreted as a map of Amenea after it had been transformed
_into “some highly distorted perceptual space.” He argued that it was recogmzable
.,as a map because states that occur close together in geographlc space tend S be
* similar when péreeived in terms of residential desirability.
& Gould then examined the problem of whether or not the interval scale configura-
tion is simply the ordinal scale configuration which had been randomly disturbed.

interval and ordipal pqint configurations, collected themat a common origin (simi-
lar to the collection of migratory movements for the purpose of estimating a mean
information field), and exgmined the angles of origntation. His conclusion was that‘
the distribation of angles can be considered as having been :7& froma rectangu )
" lar distribution.”He then regressed an index of social welfarg’for each state against .
the pe/rceptual score (scale value) of each state. His conclusions (R2= 0.6{Y indi-
cated ‘that the overall mental map of the group reflects the variation. of relevant
welfa e, measures to a high degtee. Further analysis of this regression provided some
mterest'ing commients on the major residual values in terms of the underestimation
of’ the,ﬁnages/of certain states. Finally, by finding the configuration of. mdmduals
in the sample he was able to check to see whether or ndtindividuals located close

In order to examine this hypothesrs, he measured the locational shifts between the .,

s

-

together in his configuration had similar output configurations._ for their preferences o

for states. Again he found a ,high degree of comrespondence betweert the proximity
ofmdlvrduals in the configuration space and the configuration of states in the state
confguratron space. - ° '

One ®f the significant eonclusions from this study was that the ordlnal produc-
? tion of data prowdeﬁ a mor% easily interpretable and clearer conﬁgu\' tion than did
the more rrgorous mterval scale data. i

. can again return to the work of Tobler and Wineberg [56]. Using the Guttman- .
Lingogs sma]lest space analysis program Tobler produced a map of pre- Hrttrte cities
based on’informnation obtained ftom analyses of cuneiform tablets. Using some of
the assumptions, mherent in the well-known gravity model, Tobler" hypothesized
that the more frequently a place,was"recorded on these tablets the larger would\be
its'sjze. Furthermore the more frequently pairs of cities were mentioned together
on'the“same tablet, the greater the link betweeri them (either in a trade. or spatrak
sense) Based on these frequency counts, he compiled a’set of drssrmrlarlty measures

arid, using them as mput, reproduced a conﬁguratlon of the towns themselves.

\.Smce the»iocatrOns of two of the towns were known, he was able to orient his
output configurations in terms of latitude and longitude and to suggest an approxi-
mate location within a radius of about 50 miles for the remammg, and hitherto
unlocated, places mentioned on the tabléts. The essende of , thig.study was\ to
reproduce an archae.! ogical or historico-geographi¢ map of the location of places

" ‘based on information inputted from, a geographic model on their proximities. Infor-

“ mation derived from the configuration may pessibly then be used to choose among
a large variety of alternative locations for archaeological expeditions. Incidentally, a

. - < . . 2
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) 4.~'Archaeologica] reconstructions. For one final example of simple space tﬁr{tpu’t, we
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sxmllar experiment attempting fo reconstruct the locatnbns of former places was
wndutted by Kendall, who used siandardized mter-marniage rates for éight parishes )
n the Otmoaqr (district of Oxfordshire, England between 1600 an'd 1850 as an index
. of simdanty. Csing the Kruskal MD- SCAL program he obtg,med a very accurate
map of Otmoor §25] . '
While the above examples by no means exhaust the range of uses for simple
space MDS in geograph) they du give some 1dea of the'ty pes of problems that can
o be examined and they refer fo aariety of techniques that can be used in compiling
input data. . o, N

B. Joint Space Output~ - C-

The use ofjomi spa::e output z;ppears,to'have equally as much potential“'use in

~, geography as does simple space. The essence of joint space output is that both
individuals and stimuli are mapped into the same dimensional space. In this way,
one can obtain fhe subject preference rankings and at the same time give metric

. meaning S the distance separating indlvidual stimuli. Concurrently. one can see

" hpw close to an mdividual‘s *“ideal”’ any particular stimulus comes.

" 1. Inter-urban, mlgratlon choxces One intétesting use of joint space qutput can be ’
seeh in-the work of Demko and Briggs [8]" in their attempts to operanonallze the
cheice behavior of mlgranls They argued that inter-urban mlgrallon is the outcome”
of a clioice process in" ‘which perceptions of the favorability of each alternative
destination is a sngmﬂant\fauor Hlflue‘mmg final choice. Using a sample of individ-
uals m soulheaslgm Ontario, they generated similarities data concerned with the
perceptions Of alternative usban places and preferential LhO]Le data concerned w1th
preferences for these places as migrant destinations. -

Each individual was assumed to perceive each city as a union of attriute values.
By lml,ally ‘mapping the cmes into a perceplual space (based 0n»sxmllarmes
criteria), each place was given locational 'and distance characteristics somewhat
different from those it possesses in physical (objemve') space. In other words,
places which have similar corhbinations of pen.elved"atmbutes would be” close
togelher in the selected r-dimensional space, even though they may be far apart in
objecuve space, °, ¢
. The preference model fpr pla«,es s denved from asmultidimensional unfoldmg
.procedure. Individuals rank order places on the basis of “utility.’ or some other
cnterion of preferenue then the unfolding «lgorithar defines an ideal point;- For eath
indvidual by unfuldmg his preferences and plotting the location of this ideal pO)]t
in the same r-dimensional space as the similarities data were pib&ted_ 1, pp-
- ~140- 180] Each city then les a certaift distance from each mdmdual and a onhe-

<o dimensional vrdering pfthe relations between individuals and cities can be obtained

(see Figure 16), Again additional mformanora can be obtained from the output by

clustermg the va‘hous locations and mtérbrelmg which places. are hkely to have *

~

sxmllar«drawmg powers for given mlgrant gro(lps o b“ ,
. . . ‘ ' ]
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‘.sample of rural households [45]. His approach s described in some détail here both T

. ¢ )
Figure 16, Preference. Space for Elmira Residents

from Demko and Briggs (1970), has been removed to
conform with. copyright laws. It is a graph of eities
and individual ideal points. ' L .

\ ‘ . . B R

2~Smlmg space preference structum Rushton, has used scalmg techmques in an )
,attempt to recover the nature of the) underlying trade-offs between the various,
stimuli’ that affect the ‘ocatronal choice of towns for consumer expendrtures by a

because it is lustrative of the use of the method of paired comparisong in generat-
INg & proximity ‘matrix s /uuable for 'Scalmg by non- métric multidimensional scaling
techmques and_becatise the four corputational steps used in denvrng the
proximity mafrix have been incorporated into an integrated computer program '
[26]. Befm/%@scnbr g the four computational stages, however, a brief rationale.
for the resedrcher’s intetest in deriving such a §,cale is presented.« o
n/ur interest fies in redrctmg spatial choice from a set of alternatives, thenwe =~ .

might view observed, c;hort‘es as.the outcome of a perceptu@rocess whereby in-’ ]
“dividuals compare p)ércerved\ alternatives with an ordering function of all eonceiv-
able opportunitiés 5o as’ to Judge the most preferred altematrve Returmng o
reahty, it might then be argued that a sensitive treatment of the places chosen-as

)

" compared with thqt,e places present but not chosen - might lead to the secovering of

the exact degree substitution of increases in mpremerits of one variable pertain-
ing to the places for increases in a second variable relevant to the places. Only if ’
such statements can be made for 3ll available alternatives, can we expect to predict -
7 choices from uque graups of available alternatives. ‘The analogy with mdrfference .
garves 1n econom cs and preference structures in psychology has been made else-

: wherev [44]. ln all cases, the intent of research is to specrfy the function that orders

° ‘s
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all conceivable altemauves open to the mdmd‘zal Since this function pertams to
the relevant sumulx the basic problem is one of scaling the stimuli.
e Compunng the input marrix. /1, Defimtwn of stimuli. Sumuli may be defined at
the outset with a samphing or other experimenial design arranged so that subjects
are constramed to make Jhowces from all alternatives, ot subjects might be asked to
make choees from objects that are then assigned to stimulus groups. In cases where
the researcher’s pnor knowledge of relevant stumuli 1s \*,'eak the {tter design 1s
more appropriate. Rushton defined stimuli as \,ombinatxons of drstance-separation
between people and places, and functional complexity of p}axs {estimated by town
pcpulation sizes) (Figure 17). When one town was chosen in preference to a second,
the zenerahzauon was made that the smyh graup which the firsgplace belonged
was revealed as being preferred to the stimuls oup of the secofid. The stimuli
groups were called “locational-types/” In one, analysis, 30 such types were defined.

/o

S 26 27 - /28 ‘&’29 - 30 ..
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‘Figure 17.” Definition of Locational Types (After Rushton, 1969 (4s1y °
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T 2} The basic data matrix. From a random sample (603 respondents) of the rural
populanon of lowa in 1960, information was obtained on the places chosen for
expenditures on a fumber of commodities. Taking the place chosen for the major
ity of expendrtures for groceries, the following matrix was assembled.

TA_BLE 13. BASIC DAT,A MATRIX (HYPOTHETICAL)

. Locational Type
HousehoID 1 -2 - 3 4 5 6. 7..30
: 1 0 * * % 0 . 1 0
- . 2 0 0 .t o ,0 L N
N 3":_ 1 * = * 0 0 0 LI ’
4 - 0 L] o‘l L] 0 0 & 0 .
. - ! .7
) T
. I.cgend Town in the indicated locational type - 7
I ; lpﬁtromzed ) ) e
* present, but not patromzed . )
Onotjpresent ot L < . .

. b Computing the interpoint probabilities. A measure of the extent of preferencé
for one locational type over another is the probability ‘that one type is chosen over _
another when both are present and one is chosen. This probabrlrty_afun be computed
as'a relative frequ‘qncy by manipulatjon of the basic data matrix described above .
[45] : . .

¢. Computing the interpoint proxmunes. From this measure of the degree of prefer

ence, a ifeasure of perceptual distance between locational types is required tha

least tn an ordinal sense, will indicate Closer or further perceptual distang ce\betiween

all palrs of 1y pes. For this purpose, we use.the premise of Cattell that equally often

noticed differences b%ween stimuli are eqrzral «unless, always or never noticed. Con..
sequently, if one locational type 1s as fréquently preferred to a second ype as that

_type is to the first (on the occasions when both -are present and oné of them is

chosen) the overall perceptual drstance etween. tife two types is zero. The per-

.ceived distance bet\yeen any two types is gwen by

partrcularly by non-metric scalmg teﬁhmques for the quality of the mformauon is_
such that we are confident only of the sank ordermg of the interpoint disfances.”
.. However, Shepard {51} has shown that the rank ordering of all mterpomt distances

e L e 000’74
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in a matnx.implies the metric pusitiun of the punts in a%pace of unkrtown dimen-
signality and that. where the' number of pomts s large (e.g.. greater than 15) and
the true dimenstogahity of the space ig small. the freedom of movement n this
spas,e_ is most restricted ff the rank order of interpoint distan.es between points 1n
the metnic space 15 tu currespund with the rank urder in an wiput matnix. Hence, he -
argues. that metric structures are often implicit in otdinal dara.

d. Scaling the locational 1y pes. The locational ty pes were scaled by the method of
Kruskal {28]. dand an ssopleth map of the scale values for the one-dimensional

solution is included 4s Figure 18. !
\

e. Stgmﬁcance of the recuvered scale. The sngmﬁ;am.e of the re«.overeg scale 1s that,
while “medsured” from observed beh.mor in a spatial system of opportunities, 1t
might explain sp:mal choice in .a regxon where the density and argangement of
spatial opportunities are different. Preference scales are fundamental fs,npuons of
,behavior in that they show how all hypothetical alternatives are evaluated. Since a
particular emironment 1s a unique subse:t of the set of hy potheticat altemnatives, the
preference scale may be used to ev,aluate lhls special case_ It ss this generah;y which
an appropnately designed preference scale]]  pussesses that leads to its zreat potential
in solvmg research proolems

v
>

)
f lnter ~persongl compansons of sazle& Ewing {12} has compared the preferem.e
. scales of locauonal types for different social and economi. groups of the lowa
households. He has applied significahce tests to the differences in probabihity vatues
in the cells of an input matrix and he has.also used differences in scale values for a
subset of alternatives to compute the probabllmes of interaction wath any alterna-
_ tive. He found that the greatest difference in preference structures was between two
s grpups of, households. one of which. had_been showr to patronize the nearest
“available opportunity while the other was cbmposed of households who by -passed
the nearest opportunity mn favor of some other. This result sty be contrasted with
that of Ermuth [1 l] who found no difference bety the pre ference scale of one

&

.group of urban households who clafmed (in 3 test quesnon using the sﬁnanm. s

differential) that the distance uf a store was Impustant in their choice, and the scale

4

) of a second group who claimed that distance % was not lmportanl Lot *

(\h e . -
& Temporal comparisuns of scales. Several factors lead to temporal changes in such

scales. Changes 1n how, people evaluate alternatives are, often induced by changes in
_the character of the alternatives themselves and 1n the transportation system that
relates them to the alternatives, these may lead to changed preference scales. One,
study has compared the lowa préferénce scale for grocery _purchases in 1960 wuh
, that of ?935 [46]. Major differences found in the two scales can be sutmarized as
an inceedsg tendency tn 1960 fgr fuwa housgholds to by-pass small towns at close.

dlstan‘.es for larger towns far;her away. Su\.h a generahzatlon has prevxously been
)

« y -
-~ -
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made on the basis of less formal and less quantitative research, but the precise
caibration of the change is not possible unless the scales are computed. The growth
Jor decline of spectﬁc towns n this peniod, witl depend to a.large degree on their
position in relation to the two scalgs. o ’

e

«

. , ' .
3. ?ref'ergnce and choice in different environments. Compansons have been made
between preferende scales measured n«two different enviranments, southwestern
Michigan and [owa [47]. The compansons showed. that. despite different distance-
decay functions for the probability of choices made at different distances, the

\( 3
cove'ed preference scales are slmjﬁ?in the two areas.

" a. Juintspace analysis of preference scales. A second approach to the question of
choice m difierent environments is to ask whether spatial chaices for like things in
different areas .an be’ regarded as different pomnts of view from which the two
groups evaluate the stimuli (lovational ty pes). Beginning with 2 matrix consisting of
the scale rankings of the locauonal types for three commodities in Iowa and for the
same three 1n Michigan,.the six sets of rankings were: “evaluated to determine where
each was, positioned i the joint sgace with the 30 stimuli (Table 14). The -
lucational types are defined in Figure 18. The two@xmensxonal joint-space solution
is shows in Figure 19. and the scatter plot of configuration distances and input
rgnks 15’showy in Figifte 20. The stress value which measures the goodness-of-fit is
0.052. The analysis used the TORSCA algorithm {61, p. 13]. The close proximity
in this preference space of five of the six points representing the groups shows that
systematic differences in viewpoints of those five ‘groups do not exist, rather that
the ordenng of spatial- alternatives is similar in all five. cases. The sixth point,
describmg the wiewpomnt of the Michigare group choosing towns, for clothing
purchases, 1s anomalous and deserves further study. Such differences in preference
strugtures can be attributed to one or both of two sources. They may indicate that
one group evaluates symlar stimult dlfferentl) for example, the results above might
frean that lowa households. have “a, greater propensity to” patronize small, local
tuwns whereas. their, Michigan counterparts might have changed their former habits

 and now prelfer tovmake the I6ngér journey to the bigger towns. Alternatively, the
dlfferent' preference structures might reflect thes fact that similar;sized towns in
'sht.hlgan "and. lowa mlght contan different amqunts and types of clothing stores,

" thep the observed pattern of Flgure l‘) \vould be a reflection of the-ambiguity.
present in the surrogate variable “town-size™ as a4 measure of town content. Further

. resean.h would clanfy these mterpretatlons Ho\wver the anomalous group asnde
the tight cluster of the other five groups in the perceptual space and the accuracy

. § vath which the mdependentl) cgmputed preferen\.e structyres could be recovered
<§ from \has Jent space 1s ap indeation of the, consistency of spatial-preference _ .
5, Structires Tor dlff%rent trip purpuses, as well as for x.hou;e of towns in dﬁ'ferent

©;  areas. . . . . T,
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Population

- Town

0
Distance to Town (miles)

- 15,

Figure 18. -G'pace Preference Structure for Grocery Purchases Iowa 1960 (After
Rushton, 1969 [45]) :

An ingenious recent application of joint—spa;:e analysis was designefi to shed.light
on the problem of interpreting scaled dimensions} referred to in Section L. In a
study of individual rankings of U.S. states for residential desirability, Lieber [31]

added to the m x n matrix of m states and n state viewpoirits, Ix'm objectxve

., measures of the states on variables hypothesxzéd to be related to resni.ntlal desir-

ability preferences. He then simuitaneously scaled the m + n +1 points }n the same

. space and interpreted interpoint distances between the state viewpoints and the
. objective criteria asa measure of the degree to, which the state viewpoint corre-
sponded with the various objective criteria. Tables 15 and ‘16 show the resylts for

Ty

O
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the 17 most preferred states. .

2

Incorporatxon of preference scges in dszuszon models De Temple [I9] has’
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F1gure 19. Joint Space for Consumer Spatial Choices in chhlgan and fowa.
Legend. 30 unidentified points refer to the 30 locational types. 'Points numbered
1-Michigan, <lothing; 2—-Iowa, clothing: %—Mlchlgan apphances, 4—fowa, appli-
ances; 5— Mlchlgan grocenes 6—lowa, grocenes

< . \ ,
d that a space- preference structure is a more appropriate predictor of spatlal »
mteracnon rates than the more commonly used distance-decay finctions, since, as * 7
" we stat_ed above, the preference structure is more sensitive to the unique distribu-
tion of people or places in a gwen context, De Temple, used preference structures
, for towns selected for différent commodny expendltures+generahzed for the
probablhstlc allocation, rule of Luce {36] in order to generate prhbablhtles of
interaction w1th places-to govern the spread of the adoptlon of a farmmg innova-

lcy"' .‘_"67' .
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tion. Formerly, distance-interaction ratesthad been used for this purpose. His opera-: ‘ ]
tionalization of the diffusion model is thus closer to the theoretical model first
proposed by Hagerstrand [19] Others experimenting with preference structures
, include Ewing [l"] and Girt [13], who have extended the application of space-
preference structures by applying Luce’s choice axiom, and Briggs [S] in his study

- of preferences for shopping centers in Columbus, Ohio. o
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_ TABLE 14.RANK DRDER OF THE THIRTY LOCATJONAL TYPES
*  FORTHE SIX PREFERENCE STRUCTURES :

4 v

chatlonal

Types

.
— .
OO0 YN LW —

—
f—

12
13
14
15

Y
17 =

.18
19 ¢

> 0%~ .

21
22,
23
+ Z4ﬁ
25
26
277
. 28
29
3

’

v

Mich. .« lIowa
Clothing
16,000 ~ 21,000
15,000 © 24,000
28,000 27,000
27,000 28,000
25,000 29,000
- 19,000 17,000
23,000. ‘18,000
29,000 25,000
26,000 22,000
. 24000 30,000
10,000 8,000
.6,000 ~ - 16,000,
18,000 . 19,000
22,000 23,000
20,000 26,000
11,000 - 4,000
* 7,000 11,000
17,000 14,000
30,000 15,000
121,000 20,000
*-9,000 -.3,000
3 OOOW * 6,000 .
13,000, - ..9,000
14,000° 12,000
12,000 13, 1000
2,000 , 1,000
1,000 © * 2,000
4,000_ 5,090
8,000 7,000
5,000 10,000

A

2

" Michay Iowa '
Appliances
13000 16,000
19,000 21,000
. 21,0000 24,000.
30,000 27,000
29,000 30,000 °
7,000 11,000
15,000 18,000
17,000 19,000 °
28,000 23,000
27,000  .29;000 -
4,000 5,000
11,000 9,000
16,000, * 25,000
23,000 17,000
26,000  .28,000.
‘6,000 8,000
12,000 12,000 °
22,000 15,000
25,000 ° 26,000
24,000 22,000
9,000 4,000
1,000 - 6,000 -
14,000 3,000
18,000, ~13.000
20,0000 20,000
. /3,000 . 7,000
2.000 2,000
5,000 - 1,000
. 10,000 10,000
. 8000 - ‘14,000

h ;«?HQQQBO.

»

.Towa

Mich.
. Groceries
12,000 15,000
16,000 22,000
20,000 25,000
'29,000 28,000
28,000 - 30,000
8,000 10,000
14,000 - 17,000
23,000 - 9,000
22,8600 24,000
27,000  29;000
4,000 5,000
11,000 13,000
17,000 19,000
25,000  26,00(
30,000, -27,000
© 3,000 ° 1,000
7000 11,000
15,000 14,00
24,000 ‘21,000
26,000« 23,000
3,000 ° 4,000
1,000 . 6,000
13,000 * 12,000
. 19,0000 16,000
21,000 - 20,000
18,000 3,000
®2,000. + ~2,000
6,000 7,000
< 10,000 * 8,000
9,000 18,000
. - ¢
s

g
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,, State View

TABLE 15. IN&E\R\ROINT
AND OBJECTI

7 o

DISTANCE MATRIX OF GENERAL VIEWPOINT

RION OF THE SEVENTEEN PREFERRED STATES

E CRI
HE PARTITIONED RANKINGS vyt

Alphabetrc
Contrgurty Offerihy,

e Sk,

fwarm

Coastal/

—--Regional
Climate Recreatronai D;stance Preference

. Utah _ 0.285 1.578 1.379
Texas | . 1.256 0.808  0.009
Vermeont . 1.250 0.838 0.040
South Dakota 1.204 0.733 0.067
Tennessee 1.237 0.960 0.161°
Indrana 1.356 - 0.583 0.222
‘California s 1.230 . 0.852 0.057 -

+ Maryland . 1.444 0.375 0431

- Florida ’ 1.242 Q.829 - 0.032

: R . . e
' TABLE 16. FREQUENCY OF C'RITERION IMPORTANCE ON THE
) STATE YIEWPOINTS OF FREFERBE TATES
t - . . [y
-'/ e .Most _Second Most )
o Cntenon RN ImportantFactor Important Factor * .~

-\ Alphabetic,Cohtrgurty 1
% : Urban Offenngs “ o~
CoastalyRecreational ’ 1
Warm Climate 1
Distance . 1
Regional Pre ference o ¢ 3
.None - ¢~

! Total L 9 - 9 .
(S . ! ¢ v E= 4 . 't
4, Incorporatron of preference scales in central-place theory. Since central -place,
theory describes the thgoretical location of business clusters (s"ttl'ements) resulting
‘from th mutually adaptive behavior patterns of entrepreaefirs and consumers,
scales that describe how one of these groups responds to actions of the other groug,

. ought to be he fundamental postulates of the theory. But the scales that were used
in the classical statements were so simple that the.y were not commonly recognized
as scales. ,Thus, from the consumer’s point of view, the postulate of Christaller that

., the consumer. would patronize the closest place ofgvnng the required goods was
§ essentrally a scaling of relevant/“alter,natrves on the«Jistance variable and postulating

" that the alternative with minimum distance scal¢value would be most preferred and * .
hence patronized. Described in this way, i oqu seem to be a natural development

~ . for the theoretician to question the #ffect on the derrvéd\settlement patterns of

substituting more realistic consumct preference scales for' the one used by Christal-
and rmhcrtly accepted by-fost researchers who have “tested” the theory since

'his work firSNappeared. The questiod has been discussed [6] and a formal model of
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_centfal-place theory has been constructed in which the consumer preference scale
has been varied [48].4The results were that, accepting all the other postulates,

constraints, and envirokmental assumptions of Christaller, the {groupmg of umque
derived property of

the theoretical system, Such findings support the t
important input to location theories for mutually, a

arg a hallimark of all locatrogn theories.
:17% research i rs

tive behavior patterns which *

\bundles" of goods in-a Céntral-place hierarchy was no Ion§)
l:%that preference scales are an

Further evrdence of the usefulness of suchapreferences in subst
found in other work unpublished at The University of lowa. Mr. T/ Bell has
trend surface equations of the scale values in a computer. prograny that estlmat
tributary populations for market centers. From a close checkerboard sample o
rural locations, the algorithm evaluates surrounding towns ind allocates the area .
surroundmg the sampﬁ!y,pomt to the most preferred market center, using the equa-
“tion. for the preference ‘function for the activity in questpn Bell is currently
comparing the relative sizes of tributary populations surrounding ‘centers which.

ave lost certain activities in the past. decade with centers that have supported fhe

activity or have added it to their business structure durmg that period.
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. al The overall strategy adopted in this mohbgraph has been to present MDS as a

e ~ usefuktool for, geographers. ToMo this, we felt that it was necessasy to explaimn the
. component parts of the method; to mention the lypes of metric and non-metric
- : problems to which 1t hiad beenfapplied, to discuss the nature of data required for
) mpul and lo examine the mathematjcal gture of the, lechmque. It behvoves us
now 16 comment on some *of the problemsﬁm\volved in dsing the techmique, and to
W v " - elaborate on the areas of potentlal use of MDS analy51s in.the Ldlsmphne

ot ,»a -
H E. s . K . o o

e Prof)lefns of Using MI§S . ' o , “, .

v

he problem otf ldenufymg dlmensmns Jhas prevxously been mentioned, PeThaps
most serigus problem<relates to the “sloppmg” subroulmes which detérmine
ighenst ahly and “fit of the output. This is the globa] minimum problem.
stress values at each iteration help to determme the' goodness-of-fit .
rived cqnfguranon and an actual dala set. Sansfaclory stress values
LS . can, sometl es, bec obtafned, whef “Io;al mlmma are reached; continued iteration
.. ' ‘miy at fixst produge ah increase in stress and then a deugase whxchuesults in values .
e cenuderabb lower than those obtained at the Io»al\mlmmum Resultmg Lonf‘gura-
’ tions and Interpoint dlslar&:es may also uhdnge consxderably in this process. Most
VK: «f _MDS algomhms check for local minima by char{gmg step sizes and t.ontmumg the
e 1terano S a glven number of times. For the most part tf&se procedures satlsfy a |
' researcher . An ahernatxve method of handling this problem s to rerun the i iterative’ 1‘
st sequence beginning with different stamng, Lont‘guratlons and checking to spc if
' approximately the sime  configuration is ‘obtdined on each Fun. However, there isno  «
. sure way of delermmmg if a gloﬂl minimum has been reached, consequently, the
—— tgchnlquekhould not at lhls stage be used to define sgch mmlma(’ . ) 7‘5@ s/
. .

NB‘Poanal»uses of MDS in Geograaly R o A

-One potentlal uses of MDS Wthh is as yel largely unexp}oreﬁn gemg-—“ S
' Yo raphm l;unmg scale values for input into other analytu.al algomhm&

r”~

' _,." ; ) - Perhaps 1k _ost obvious of these uses is the apphication of cluster ‘Iecﬁmques on. ,'.
o ’\\‘ . MDS output Lonfgur Cpnf‘gurallons win be,analyzed n this m@nerenher iny .
:‘ * simple vr joirt spacesMn the Iatter case, either mdxvndual or snmulus Lonﬁgu\iqnons
3 5@;’\ ke 4czrn%uﬁ.mmmed ‘ g e
'5“* Wﬁxle geographers gre frf\quentl) mterested in lhe patté?n of outgut cbnfgumn,
) t’,,%}'& }'*tions other -dgcnplmes are ‘more mlerEs?tqe\d in the séale. values or:the
" distances derived.from MDS Znalyses. For examﬁle it may be* posﬂ?le o use ,
2“7 interpoint distances as iuput into decision models f an attempt to predict u,l}on.es. ’
© *" In joint space analyses, distanges between mdxhduals and stimulus ponts beCOme
. the data inputs into such models.-Although no studxes exist as yet which x.ombme .
L. charagtensm& of clusters (such®as as mean areal uenters) and jont space dlslances it y

;o
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. . and other populations.

eography fo
%&gn their clarification and

seems that they are eminently feasléble for determmrng likelihoods of rnteractron
betwéen groups of 1nd|vrduals and specific stimulus points. \& .
3 * Qur summaries of the work of Tobler, Kendall, and Wilkinson Mustrate one of '
the more creative uses of MDS analysis—that of filling in “missing data” or speculat-
" in} about the locations of phenomena. Archaeologlsts and historical geographers
appear therefore to have at their disposal an lnterestrng and rnnovative method of .
analysis fors their disciplines. 7/ *

Whether joint space or simple space procedures are used, MDS appears to have a
multitude of potential usf in géography. In addition to uses such as those above, s
we suggest the following areas of potential research: - o

l) to stratify populations accordrng to specific social, economic, ethnic, or

other characteristics in order to defineprecisely how variations in these
phenomena influence perceptions of locations and attributes of things, and

"y L to determine the cpntribytion of such stratificatiofis to variations in pref-
" erence rankings /ofﬁhenon\ by subject.

2) to determine how distance, or locoatronal characteristics of conﬁguratr&ls

", change with time; this par lyurndrcates the role of learning and information 7
_ gathering in obtamrng pefceptual accuracy. The results can,then be used to "
"*help explain a variety of ﬁfﬁal behdViors including Jourgy to- work con- '
" sumer behavror, and resrdéntral site selection— ¢ ¢ oo
3) to -assist in translatrng non-metric data to metrie distance measures for "

.

~

e . purposes such as drstmgurshmg clusters of like and unlike phenomena.
P 4) asa potential aid in policy makmg by deterrgining the ‘perceptual gaps”

that exist in groups of phenomena: for example, ﬁndrng the locational and  ~
» ' perceptual properijes of stores that should be developed'to servé mrnorrty o,
K
5) to experiment with the notion gf perceptual drstance, to translate it rnto
metric terms, and perhaps révise our widespread use of- just t
- dimensional Ehiclidean distancesin explanatory models of spatial behavior
6) to examine the functional relationships between perceived and “actual" -
distances in.order to determine the range over which these, distancks agree,
the natur‘of the relationship (i.e., whether linear or non- lrnear) e rate
at which divergence occurs as drstance mcreases and other facts concern-
ing thetwo types of distance.. L ) RS e
o,
TT777) to exammné thie- -nature of terms fuch as prox fity” "and closeness in
order tgestablish meanrngful uses'of the ferms #n'spatial analysrs. , .
'y The r@seaxch questions preposed above hpve existed in a confused sense in | B .
many years, the maﬂumatle €velopments reviewed in this mono- .
rmalrzatron, providing concepts, terms, & .
trmulate the researcher’s imagination. Since
h “that has beep undertaken by\geographers

theorerzts anigd empmqal findings that
_each q estrod\an be related to resea
0 x as.t,few “ears, it would be prudent to note thaf in eaclgcase the questio
" raise may_§ imately solved by other forms of data analysis. However ex,

}nce to date has ingicated 1 f'of i
‘5 - . . . ;7 . .
_— S
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'these questions  The fact thay, they hdve been raised so recently, however, illustrates
" how developments in basic.analy tical procedures stimulate researchers to ask new
qugstions. ez

The development of non-metric MDS has therefore provided the geographer With- - +
concepts and techniques by which he can expect to solve some of the puzzlmg
measurement problems that have impeded the developihent of behavioral g 8e0g-
raphy. For example, geogrdph) has only just begun to research and to m¥asure the

* form of preference structures, We can surely expect that man’s adjustment toand "

behavior in his, physical and human environment will more commonly be inter-
preted and researr.hed as his reaction to a perceived sét of stimuli. His evaluation of .

*
these stimuli will bewme a primary research problem. Decrsrons made in this

“environment will murcaumgly be viewed as a process by whrch basic preferences are,
linked to perceived sets of stimuli, .

In addition to their role in understandmg choice behavior, preference structures
will increasingly be us /n the normative sense of designing or controlling operat-

' mg spatial systems in order to optimize subjectiye preferenct functions. Thus the -

Lentral importance of basic preference studies'is eniphasized and the ac;ompanymg
-rofe of MDS assbired.

In Section I, we mentioned the existence of several MDS algornhms Each of
thele has been programmed and information regarding their availability can be
obtained from either the Geography Computer E change rogram Michigan
State University or from the authors, themsel A\ recent velopmggl not dis-
cussed in our text rs,the MINI$SA s nes ofsca mg p glia s developed by Lingoes
and Ro kam)-we have not yet examined this a\lgorrthm in detail but its structure
¢ “and’ advamagesgre discussed by the authors [33]. ) .

I8 conclision, we reiterate oyr position that although MDS is still in.a develop--
mgntal stage.it provides a useful and construcpve methodology for examining the.
probtems of preference and choice- which are of i increasing concern to researchers in
geography, and we express the hope that our treatment of the problem will increase
knowledg’e and avarlabllny of the method in the drscrplme ’
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